On p -injectivity, YJ-injectivity and quasi-Frobeniusean rings

Roger Yue Chi Ming

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 1, page 33-42
  • ISSN: 0010-2628

Abstract

top
A new characteristic property of von Neumann regular rings is proposed in terms of annihilators of elements. An ELT fully idempotent ring is a regular ring whose simple left (or right) modules are either injective or projective. Artinian rings are characterized in terms of Noetherian rings. Strongly regular rings and rings whose two-sided ideals are generated by central idempotents are characterized in terms of special annihilators. Quasi-Frobeniusean rings are characterized in terms of p -injectivity. Also, a commutative YJ-injective ring with maximum condition on annihilators and finitely generated socle is quasi-Frobeniusean.

How to cite

top

Yue Chi Ming, Roger. "On $p$-injectivity, YJ-injectivity and quasi-Frobeniusean rings." Commentationes Mathematicae Universitatis Carolinae 43.1 (2002): 33-42. <http://eudml.org/doc/248996>.

@article{YueChiMing2002,
abstract = {A new characteristic property of von Neumann regular rings is proposed in terms of annihilators of elements. An ELT fully idempotent ring is a regular ring whose simple left (or right) modules are either injective or projective. Artinian rings are characterized in terms of Noetherian rings. Strongly regular rings and rings whose two-sided ideals are generated by central idempotents are characterized in terms of special annihilators. Quasi-Frobeniusean rings are characterized in terms of $p$-injectivity. Also, a commutative YJ-injective ring with maximum condition on annihilators and finitely generated socle is quasi-Frobeniusean.},
author = {Yue Chi Ming, Roger},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {von Neumann regular; $V$-ring; Artinian ring; $p$-injectivity; YJ-injectivity; quasi-Frobeniusean; von Neumann regular rings; -rings; Artinian rings; YJ-injectivity; quasi-Frobenius rings; annihilator conditions},
language = {eng},
number = {1},
pages = {33-42},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On $p$-injectivity, YJ-injectivity and quasi-Frobeniusean rings},
url = {http://eudml.org/doc/248996},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Yue Chi Ming, Roger
TI - On $p$-injectivity, YJ-injectivity and quasi-Frobeniusean rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 1
SP - 33
EP - 42
AB - A new characteristic property of von Neumann regular rings is proposed in terms of annihilators of elements. An ELT fully idempotent ring is a regular ring whose simple left (or right) modules are either injective or projective. Artinian rings are characterized in terms of Noetherian rings. Strongly regular rings and rings whose two-sided ideals are generated by central idempotents are characterized in terms of special annihilators. Quasi-Frobeniusean rings are characterized in terms of $p$-injectivity. Also, a commutative YJ-injective ring with maximum condition on annihilators and finitely generated socle is quasi-Frobeniusean.
LA - eng
KW - von Neumann regular; $V$-ring; Artinian ring; $p$-injectivity; YJ-injectivity; quasi-Frobeniusean; von Neumann regular rings; -rings; Artinian rings; YJ-injectivity; quasi-Frobenius rings; annihilator conditions
UR - http://eudml.org/doc/248996
ER -

References

top
  1. Baccella G., Generalized V -rings and von Neumann regular rings, Rend. Sem. Mat. Univ. Padova 72 (1984), 117-133. (1984) Zbl0547.16006MR0778337
  2. Chase S.U., Direct product of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. (1960) MR0120260
  3. Faith C., Algebra II: Ring Theory, Grundlehren Math. Wiss. 191 (1976). (1976) MR0427349
  4. Faith C., Rings and things and a fine array of twentieth century associative algebra, AMS Math. Survey and Monographs 65 (1999). (1999) MR1657671
  5. Goodearl K.R., Von Neumann Regular Rings, Pitman, 1979. Zbl0841.16008MR0533669
  6. Hirano Y., Tominaga H., Regular rings, V -rings and their generalizations, Hiroshima Math. J. 9 (1979), 137-149. (1979) Zbl0413.16015MR0529329
  7. Hirano Y., On non-singular p -injective rings, Publ. Math. 38 (1994), 455-461. (1994) MR1316640
  8. Huynh D.V., Dung N.V., A characterization of Artinian rings, Glasgow Math. J. 30 (1988), 67-73. (1988) Zbl0637.16012MR0925560
  9. Huynh D.V., Dung N.V., Rings with restricted injective condition, Arch. Math. 54 (1990), 539-548. (1990) Zbl0703.16003MR1052974
  10. Huynh D.V., Dung N.V., Smith P.F., Wisbauer R., Extending Modules, Pitman, London, 1994. Zbl0841.16001
  11. Mohamed S.H., Mueller B.J., Continous and discrete modules, LMS Lecture Note 47 (C.U.P.), 1990. 
  12. Puninski G., Wisbauer R., Yousif M.F., On p -injective rings, Glasgow Math. J. 37 (1995), 373-378. (1995) Zbl0847.16005MR1355393
  13. Wang Ding Guo, Rings chracterized by injectivity classes, Comm. Algebra 24 (1996), 717-726. (1996) MR1373501
  14. Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, New-York, 1991. Zbl0746.16001MR1144522
  15. Xue Wei Min, A note on Y J -injectivity, Riv. Mat. Univ. Parma (6) 1 (1998), 31-37. (1998) MR1680954
  16. Xue Wei Min, Rings related to quasi-Frobenius rings, Algebra Colloq. 5 (1998), 471-480. (1998) MR1683093
  17. Yue Chi Ming R., On von Neumann regular rings, Proc. Edinburgh Math. Soc. 19 (1974), 89-91. (1974) MR0342553
  18. Yue Chi Ming R., On simple p -injective modules, Math. Japonica 19 (1974), 173-176. (1974) Zbl0263.16019MR0399167
  19. Yue Chi Ming R., On regular rings and continuous rings, Math. Japonica 24 (1979), 563-571. (1979) MR0565541
  20. Yue Chi Ming R., On V -rings and prime rings, J. Algebra 62 (1980), 13-20. (1980) Zbl0429.16018MR0561114
  21. Yue Chi Ming R., On regular rings and Artinian rings, Riv. Mat. Univ. Parma (4) 8 (1982), 443-452. (1982) Zbl0516.16006MR0706868
  22. Yue Chi Ming R., On von Neumann regular rings, X, Collectanea Math. 34 (1983), 81-94. (1983) Zbl0544.16006MR0747858
  23. Yue Chi Ming R., On regular rings and continuous rings, III, Annali di Matematica 138 (1984), 245-253. (1984) Zbl0558.16004MR0779545
  24. Yue Chi Ming R., On regular rings and Artinian rings, II, Riv. Mat. Univ. Parma (4) 11 (1985), 101-109. (1985) Zbl0611.16011MR0851520
  25. Yue Chi Ming R., On von Neumann regular rings, XV, Acta Math. Vietnamica 13 2 (1988), 71-79. (1988) Zbl0685.16009MR1023706
  26. Yue Chi Ming R., On V -rings, p - V -rings and injectivity, Kyungpook Math. J. 32 (1992), 219-228. (1992) Zbl0786.16008MR1203937
  27. Yue Chi Ming R., On self-injectivity and regularity, Rend. Sem. Fac. Sci. Univ. Cagliari 64 (1994), 9-24. (1994) Zbl0870.16003MR1356180
  28. Zhang Jule, Fully idempotent rings whose every maximal left ideal is an ideal, Chinese Sci. Bull. 37 (1992), 1065-1068. (1992) MR1321903
  29. Zhang Jule, A note on von Neumann regular rings, Southeast Asian Bull. Math. 22 (1998), 231-235. (1998) Zbl0923.16011MR1684237
  30. Zhang Jule, Wu Jun, Generalizations of principal injectivity, Algebra Colloq. 6 (1999), 277-282. (1999) Zbl0949.16002MR1809647

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.