Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions
Mohamed Morsli; Fazia Bedouhene; Fatiha Boulahia
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 1, page 103-117
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMorsli, Mohamed, Bedouhene, Fazia, and Boulahia, Fatiha. "Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions." Commentationes Mathematicae Universitatis Carolinae 43.1 (2002): 103-117. <http://eudml.org/doc/249002>.
@article{Morsli2002,
abstract = {In [6], the classical Riesz representation theorem is extended to the class of Besicovitch space of almost periodic functions $B^\{q\}$ a.p., $q\in ] 1,+\infty [$ . It is also shown that this space is reflexive. We shall consider here such results in the context of Orlicz spaces, namely in the class of Besicovitch-Orlicz space of almost periodic functions $B^\{\phi \}$ a.p., where $\phi $ is an Orlicz function.},
author = {Morsli, Mohamed, Bedouhene, Fazia, Boulahia, Fatiha},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Besicovitch-Orlicz space; almost periodic function; reflexivity; duality; dual Besicovitch-Orlicz space; reflexive Besicovitch-Orlicz space},
language = {eng},
number = {1},
pages = {103-117},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions},
url = {http://eudml.org/doc/249002},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Morsli, Mohamed
AU - Bedouhene, Fazia
AU - Boulahia, Fatiha
TI - Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 1
SP - 103
EP - 117
AB - In [6], the classical Riesz representation theorem is extended to the class of Besicovitch space of almost periodic functions $B^{q}$ a.p., $q\in ] 1,+\infty [$ . It is also shown that this space is reflexive. We shall consider here such results in the context of Orlicz spaces, namely in the class of Besicovitch-Orlicz space of almost periodic functions $B^{\phi }$ a.p., where $\phi $ is an Orlicz function.
LA - eng
KW - Besicovitch-Orlicz space; almost periodic function; reflexivity; duality; dual Besicovitch-Orlicz space; reflexive Besicovitch-Orlicz space
UR - http://eudml.org/doc/249002
ER -
References
top- Albrycht J., The theory of Marcinkiewicz Orlicz spaces, Dissertationes Math., No. 27 (1962). Zbl0101.32803MR0139935
- Besicovitch A.S., Almost Periodic Functions, Dover Pub. Inc., NewYork, 1954. Zbl0065.07102MR0068029
- Chen S., Geometry of Orlicz spaces, Dissertationes Math., No. 356 (1996). Zbl1089.46500MR1410390
- Hillmann T.R., Besicovitch-Orlicz spaces of almost periodic functions, Real and Stochastic Analysis, Wiley, 1986, pp. 119-167. Zbl0656.46020MR0856581
- Hudzik H., Kaminska A., On uniformly convexifiable and -convex Musielak-Orlicz spaces, Comment. Math. 25 (1985), 59-75. (1985) Zbl0588.46022MR0795121
- Iannacci R., About reflexivity of spaces of almost periodic function, Rend. Mat. Appl. (7) 13 3 543-559 (1993). (1993) MR1276259
- Krasnosel'skii M.A., Rutickii Ya.B., Convex function and Orlicz spaces (translation), P. Noodhoff Ltd., Groningen, 1961. MR0126722
- Morsli M., On some convexity properties of the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. 34 (1994), 137-152. (1994) Zbl0839.46012MR1325081
- Morsli M., Espace de Bésicovitch Orlicz de fonctions presque périodiques. Structure générale et géométrie, Thèse de Doctorat, 1996.
- Morsli M., On modular approximation property in the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Univ. Carolinae 38.3 (1997), 485-496. (1997) Zbl0937.46009MR1485070
- Musielak J., Orlicz W., On modular spaces, Studia Math. 18 49-65 (1959). (1959) Zbl0099.09202MR0101487
- Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Marcel Dekker, Inc., New-York, 1991. Zbl0724.46032MR1113700
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.