Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions

Mohamed Morsli; Fazia Bedouhene; Fatiha Boulahia

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 1, page 103-117
  • ISSN: 0010-2628

Abstract

top
In [6], the classical Riesz representation theorem is extended to the class of Besicovitch space of almost periodic functions B q  a.p., q ] 1 , + [ . It is also shown that this space is reflexive. We shall consider here such results in the context of Orlicz spaces, namely in the class of Besicovitch-Orlicz space of almost periodic functions B φ  a.p., where φ is an Orlicz function.

How to cite

top

Morsli, Mohamed, Bedouhene, Fazia, and Boulahia, Fatiha. "Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions." Commentationes Mathematicae Universitatis Carolinae 43.1 (2002): 103-117. <http://eudml.org/doc/249002>.

@article{Morsli2002,
abstract = {In [6], the classical Riesz representation theorem is extended to the class of Besicovitch space of almost periodic functions $B^\{q\}$ a.p., $q\in ] 1,+\infty [$ . It is also shown that this space is reflexive. We shall consider here such results in the context of Orlicz spaces, namely in the class of Besicovitch-Orlicz space of almost periodic functions $B^\{\phi \}$ a.p., where $\phi $ is an Orlicz function.},
author = {Morsli, Mohamed, Bedouhene, Fazia, Boulahia, Fatiha},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Besicovitch-Orlicz space; almost periodic function; reflexivity; duality; dual Besicovitch-Orlicz space; reflexive Besicovitch-Orlicz space},
language = {eng},
number = {1},
pages = {103-117},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions},
url = {http://eudml.org/doc/249002},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Morsli, Mohamed
AU - Bedouhene, Fazia
AU - Boulahia, Fatiha
TI - Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 1
SP - 103
EP - 117
AB - In [6], the classical Riesz representation theorem is extended to the class of Besicovitch space of almost periodic functions $B^{q}$ a.p., $q\in ] 1,+\infty [$ . It is also shown that this space is reflexive. We shall consider here such results in the context of Orlicz spaces, namely in the class of Besicovitch-Orlicz space of almost periodic functions $B^{\phi }$ a.p., where $\phi $ is an Orlicz function.
LA - eng
KW - Besicovitch-Orlicz space; almost periodic function; reflexivity; duality; dual Besicovitch-Orlicz space; reflexive Besicovitch-Orlicz space
UR - http://eudml.org/doc/249002
ER -

References

top
  1. Albrycht J., The theory of Marcinkiewicz Orlicz spaces, Dissertationes Math., No. 27 (1962). Zbl0101.32803MR0139935
  2. Besicovitch A.S., Almost Periodic Functions, Dover Pub. Inc., NewYork, 1954. Zbl0065.07102MR0068029
  3. Chen S., Geometry of Orlicz spaces, Dissertationes Math., No. 356 (1996). Zbl1089.46500MR1410390
  4. Hillmann T.R., Besicovitch-Orlicz spaces of almost periodic functions, Real and Stochastic Analysis, Wiley, 1986, pp. 119-167. Zbl0656.46020MR0856581
  5. Hudzik H., Kaminska A., On uniformly convexifiable and B -convex Musielak-Orlicz spaces, Comment. Math. 25 (1985), 59-75. (1985) Zbl0588.46022MR0795121
  6. Iannacci R., About reflexivity of B q a . p . spaces of almost periodic function, Rend. Mat. Appl. (7) 13 3 543-559 (1993). (1993) MR1276259
  7. Krasnosel'skii M.A., Rutickii Ya.B., Convex function and Orlicz spaces (translation), P. Noodhoff Ltd., Groningen, 1961. MR0126722
  8. Morsli M., On some convexity properties of the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. 34 (1994), 137-152. (1994) Zbl0839.46012MR1325081
  9. Morsli M., Espace de Bésicovitch Orlicz de fonctions presque périodiques. Structure générale et géométrie, Thèse de Doctorat, 1996. 
  10. Morsli M., On modular approximation property in the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Univ. Carolinae 38.3 (1997), 485-496. (1997) Zbl0937.46009MR1485070
  11. Musielak J., Orlicz W., On modular spaces, Studia Math. 18 49-65 (1959). (1959) Zbl0099.09202MR0101487
  12. Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Marcel Dekker, Inc., New-York, 1991. Zbl0724.46032MR1113700

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.