No hedgehog in the product?

Petr Simon; Gino Tironi

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 2, page 349-361
  • ISSN: 0010-2628

Abstract

top
Assuming OCA, we shall prove that for some pairs of Fréchet α 4 -spaces X , Y , the Fréchetness of the product X × Y implies that X × Y is α 4 . Assuming MA, we shall construct a pair of spaces satisfying the assumptions of the theorem.

How to cite

top

Simon, Petr, and Tironi, Gino. "No hedgehog in the product?." Commentationes Mathematicae Universitatis Carolinae 43.2 (2002): 349-361. <http://eudml.org/doc/249006>.

@article{Simon2002,
abstract = {Assuming OCA, we shall prove that for some pairs of Fréchet $\alpha _4$-spaces $X, Y$, the Fréchetness of the product $X\times Y$ implies that $X\times Y$ is $\alpha _4$. Assuming MA, we shall construct a pair of spaces satisfying the assumptions of the theorem.},
author = {Simon, Petr, Tironi, Gino},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Fréchet space; $\alpha _4$-space; Fréchet fan; $(\kappa , \kappa )$-good set; Fréchet space; -space; Fréchet fan; ; )},
language = {eng},
number = {2},
pages = {349-361},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {No hedgehog in the product?},
url = {http://eudml.org/doc/249006},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Simon, Petr
AU - Tironi, Gino
TI - No hedgehog in the product?
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 2
SP - 349
EP - 361
AB - Assuming OCA, we shall prove that for some pairs of Fréchet $\alpha _4$-spaces $X, Y$, the Fréchetness of the product $X\times Y$ implies that $X\times Y$ is $\alpha _4$. Assuming MA, we shall construct a pair of spaces satisfying the assumptions of the theorem.
LA - eng
KW - Fréchet space; $\alpha _4$-space; Fréchet fan; $(\kappa , \kappa )$-good set; Fréchet space; -space; Fréchet fan; ; )
UR - http://eudml.org/doc/249006
ER -

References

top
  1. Archangel'skii A.V., The frequency spectrum of a topological space and the classification of spaces, Soviet. Math. Dokl. 13 (1972), 265-268. (1972) 
  2. Brendle J., LaBerge T., Forcing tightness of products of fans, Fund. Math. 150 3 (1996), 211-226. (1996) 
  3. Erdös P., Shelah S., Separability properties of almost-disjoint families of sets, Israel J. Math. 12 (1972), 207-214. (1972) 
  4. LaBerge T., Landver A., Tightness in products of fans and pseudo-fans, Topology Appl. 65 (1995), 237-255. (1995) 
  5. Martin D.A., Solovay R.M., Internal Cohen extension, Ann. Math. Logic 2 (1970), 143-178. (1970) 
  6. Michael E., A quintuple quotient quest, Gen. Topology Appl. 2 (1972), 91-138. (1972) 
  7. Products of α i -spaces, Nogura T. Topology Appl. 21 (1985), 251-259. (1985) 
  8. Nyikos P.J., Convergence in topology, in: Recent Progress in General Topology, ed. by M. Hušek and J. van Mill, North-Holland, 1992 pp.537-570. 
  9. Simon P., A hedgehog in the product, Acta. Univ. Carolin. Math. Phys. 39 (1998), 147-153. (1998) 
  10. Siwiec F., Sequence covering and countably bi-quotient mappings, Gen. Topology Appl. 1 (1971), 143-154. (1971) 
  11. Todorcevic S., Partition problems in topology, Contemporary Mathematics, 84, Amer. Math. Soc., Providence, RI, 1989. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.