On the linear capacity of algebraic cones
Mathematica Bohemica (2002)
- Volume: 127, Issue: 3, page 453-462
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSkrzyński, Marcin. "On the linear capacity of algebraic cones." Mathematica Bohemica 127.3 (2002): 453-462. <http://eudml.org/doc/249059>.
@article{Skrzyński2002,
abstract = {We define the linear capacity of an algebraic cone, give basic properties of the notion and new formulations of certain known results of the Matrix Theory. We derive in an explicit way the formula for the linear capacity of an irreducible component of the zero cone of a quadratic form over an algebraically closed field. We also give a formula for the linear capacity of the cone over the conjugacy class of a “generic” non-nilpotent matrix.},
author = {Skrzyński, Marcin},
journal = {Mathematica Bohemica},
keywords = {irreducible algebraic cone; linear subspace; conjugacy class of a matrix; quadratic form; irreducible algebraic cone; linear subspace; conjugacy class of matrices; quadratic form; linear capacity},
language = {eng},
number = {3},
pages = {453-462},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the linear capacity of algebraic cones},
url = {http://eudml.org/doc/249059},
volume = {127},
year = {2002},
}
TY - JOUR
AU - Skrzyński, Marcin
TI - On the linear capacity of algebraic cones
JO - Mathematica Bohemica
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 127
IS - 3
SP - 453
EP - 462
AB - We define the linear capacity of an algebraic cone, give basic properties of the notion and new formulations of certain known results of the Matrix Theory. We derive in an explicit way the formula for the linear capacity of an irreducible component of the zero cone of a quadratic form over an algebraically closed field. We also give a formula for the linear capacity of the cone over the conjugacy class of a “generic” non-nilpotent matrix.
LA - eng
KW - irreducible algebraic cone; linear subspace; conjugacy class of a matrix; quadratic form; irreducible algebraic cone; linear subspace; conjugacy class of matrices; quadratic form; linear capacity
UR - http://eudml.org/doc/249059
ER -
References
top- 10.1016/0097-3165(93)90025-4, J. Comb. Theory, Ser. A 63 (1993), 65–78. (1993) MR1213131DOI10.1016/0097-3165(93)90025-4
- On spaces of linear transformations of bounded rank, J. London Math. Soc. 37 (1962), 10–16. (1962) MR0136618
- Théorie des matrices, Dunod, Paris, 1966. (1966) Zbl0136.00410
- 10.2307/1970336, Ann. Math. 73 (1961), 324–348. (1961) Zbl0168.28201MR0132079DOI10.2307/1970336
- On nilalgebras and linear varieties of nilpotent matrices, IV, Ann. Math. 75 (1962), 382–418. (1962) Zbl0112.26403MR0171815
- Algebra, W. A. Benjamin, New York, 1970. (1970) Zbl0216.06001
- 10.1016/0024-3795(91)90335-T, Linear Algebra Appl. 149 (1991), 215–225. (1991) MR1092879DOI10.1016/0024-3795(91)90335-T
- 10.1016/0024-3795(95)00253-7, Linear Algebra Appl. 249 (1996), 29–46. (1996) MR1417407DOI10.1016/0024-3795(95)00253-7
- A note on linear subspaces of determinantal varieties, Le Matematiche 50 (1995), 173–178. (1995) Zbl0861.14045MR1373578
- Basic Algebraic Geometry, Springer, Berlin, 1977. (1977) Zbl0362.14001MR0447223
- Rank functions of matrices, Univ. Iagell. Acta Math. 37 (1999), 139–149. (1999)
- On -invariant cones of matrices with small stable ranks, Demonstratio Math. 33 (2000), 243–254. (2000) MR1769417
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.