-widths for singularly perturbed problems
Martin Stynes; R. Bruce Kellogg
Mathematica Bohemica (2002)
- Volume: 127, Issue: 2, page 343-352
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topStynes, Martin, and Kellogg, R. Bruce. "$N$-widths for singularly perturbed problems." Mathematica Bohemica 127.2 (2002): 343-352. <http://eudml.org/doc/249065>.
@article{Stynes2002,
abstract = {Kolmogorov $N$-widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the $N$-widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.},
author = {Stynes, Martin, Kellogg, R. Bruce},
journal = {Mathematica Bohemica},
keywords = {$N$-width; singularly perturbed; differential equation; boundary value problem; convection-diffusion; reaction-diffusion; -width; singularly perturbed; differential equation; boundary value problem; convection-diffusion; reaction-diffusion},
language = {eng},
number = {2},
pages = {343-352},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$N$-widths for singularly perturbed problems},
url = {http://eudml.org/doc/249065},
volume = {127},
year = {2002},
}
TY - JOUR
AU - Stynes, Martin
AU - Kellogg, R. Bruce
TI - $N$-widths for singularly perturbed problems
JO - Mathematica Bohemica
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 127
IS - 2
SP - 343
EP - 352
AB - Kolmogorov $N$-widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the $N$-widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.
LA - eng
KW - $N$-width; singularly perturbed; differential equation; boundary value problem; convection-diffusion; reaction-diffusion; -width; singularly perturbed; differential equation; boundary value problem; convection-diffusion; reaction-diffusion
UR - http://eudml.org/doc/249065
ER -
References
top- Sobolev Spaces, Academic Press, New York, 1975. (1975) Zbl0314.46030MR0450957
- Approximation of Elliptic Boundary-Value Problems, Wiley Interscience, New York, 1972. (1972) Zbl0248.65063MR0478662
- Interpolation Spaces, Springer, Berlin, 1976. (1976) MR0482275
- Elliptic problems in nonsmooth domains, Pitman, Boston, 1985. (1985) Zbl0695.35060MR0775683
- 10.1137/S0036142995290269, SIAM J. Numer. Anal. 34 (1997), 1808–1816. (1997) MR1472198DOI10.1137/S0036142995290269
- 10.1137/S0036142997327257, SIAM J. Numer. Anal. 36 (1999), 1604–1620. (1999) MR1706743DOI10.1137/S0036142997327257
- 10.1137/S0036142900371489, SIAM J. Numer. Anal. 39 (2001), 690–707. (2001) MR1860257DOI10.1137/S0036142900371489
- Approximation of Functions, 2nd edition, Chelsea Publishing Company, New York, 1986. (1986) Zbl0643.41001MR0917270
- 10.1006/jmaa.2000.6862, J. Math. Anal. Appl. 247 (2000), 272–289. (2000) Zbl0963.35047MR1766938DOI10.1006/jmaa.2000.6862
- An Introduction to the Mathematical Theory of Finite Elements, Wiley-Interscience, New York, 1976. (1976) MR0461950
- -Widths in Approximation Theory, Springer, Berlin, 1985. (1985) Zbl0551.41001MR0774404
- Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin, 1996. (1996) MR1477665
- 10.1093/imanum/15.1.117, IMA J. Numer. Anal. 15 (1995), 117–139. (1995) MR1311341DOI10.1093/imanum/15.1.117
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.