A note on circular units in p -extensions

Radan Kučera

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 223-229
  • ISSN: 1246-7405

Abstract

top
In this note we consider projective limits of Sinnott and Washington groups of circular units in the cyclotomic p -extension of an abelian field. A concrete example is given to show that these two limits do not coincide in general.

How to cite

top

Kučera, Radan. "A note on circular units in $\mathbb {Z}_p$-extensions." Journal de théorie des nombres de Bordeaux 15.1 (2003): 223-229. <http://eudml.org/doc/249069>.

@article{Kučera2003,
abstract = {In this note we consider projective limits of Sinnott and Washington groups of circular units in the cyclotomic $\mathbb \{Z\}_p$-extension of an abelian field. A concrete example is given to show that these two limits do not coincide in general.},
author = {Kučera, Radan},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {cyclotomic units},
language = {eng},
number = {1},
pages = {223-229},
publisher = {Université Bordeaux I},
title = {A note on circular units in $\mathbb \{Z\}_p$-extensions},
url = {http://eudml.org/doc/249069},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Kučera, Radan
TI - A note on circular units in $\mathbb {Z}_p$-extensions
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 223
EP - 229
AB - In this note we consider projective limits of Sinnott and Washington groups of circular units in the cyclotomic $\mathbb {Z}_p$-extension of an abelian field. A concrete example is given to show that these two limits do not coincide in general.
LA - eng
KW - cyclotomic units
UR - http://eudml.org/doc/249069
ER -

References

top
  1. [B] J.-R. Belliard, Sous-modules d'unités en théorie d'Iwasawa, to appear in Publications mathématiques de l'Université de Franche-Comté. MR1987282
  2. [GK] R. Gold, J. Kim, Bases for cyclotomic units. Compositio Math.71 (1989), 13-27. Zbl0687.12003MR1008802
  3. [KN] R. Kučera, J. Nekovář, Cyclotomic units in Zp-extensions. J. Algebra171 (1995), 457-472. Zbl0824.11071MR1315907
  4. [L] G. Lettl, A note on Thaine's circular units. J. Number Theory35 (1970), 224-226. Zbl0705.11064MR1057325
  5. [R] K. Rubin, The main conjecture, appendix in S. Lang, Cyclotomic Fields I and II, Springer-Verlag, New York, 1990. Zbl0704.11038MR1029028
  6. [S] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field. Invent. Math.62 (1980), 181-234. Zbl0465.12001MR595586
  7. [W] L.C. Washington, Introduction to cyclotomic fields. Springer-Verlag, New York, 1996. Zbl0966.11047MR1421575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.