Arithmetic Gevrey series and transcendence. A survey

Yves André

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 1-10
  • ISSN: 1246-7405

Abstract

top
We review the main results of the theory of arithmetic Gevrey series introduced in [3] [4], their applications to transcendence, and a few diophantine conjectures on the summation of divergent series.

How to cite

top

André, Yves. "Arithmetic Gevrey series and transcendence. A survey." Journal de théorie des nombres de Bordeaux 15.1 (2003): 1-10. <http://eudml.org/doc/249075>.

@article{André2003,
abstract = {We review the main results of the theory of arithmetic Gevrey series introduced in [3] [4], their applications to transcendence, and a few diophantine conjectures on the summation of divergent series.},
author = {André, Yves},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {1},
pages = {1-10},
publisher = {Université Bordeaux I},
title = {Arithmetic Gevrey series and transcendence. A survey},
url = {http://eudml.org/doc/249075},
volume = {15},
year = {2003},
}

TY - JOUR
AU - André, Yves
TI - Arithmetic Gevrey series and transcendence. A survey
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 1
EP - 10
AB - We review the main results of the theory of arithmetic Gevrey series introduced in [3] [4], their applications to transcendence, and a few diophantine conjectures on the summation of divergent series.
LA - eng
UR - http://eudml.org/doc/249075
ER -

References

top
  1. [1] Y. André, Théorie des motifs et interprétation géométrique des valeurs p-adiques de G-fonctions (une introduction). Number theory (Paris, 1992-1993), 37-60, London Math. Soc. Lecture Note Ser., 215, Cambridge Univ. Press, Cambridge, 1995. Zbl0848.11034MR1345171
  2. [2] Y. André, G-fonctions et transcendance. J. Reine Angew. Math.476 (1996), 95-125. Zbl0848.11033MR1401697
  3. [3] Y. André, Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité. Ann. of Math.151 (2000), 705-740. Zbl1037.11049MR1765707
  4. [4] Y. André, Séries Gevrey de type arithmétique II. Transcendance sans transcendance. Ann. of Math.151 (2000), 741-756. Zbl1037.11050MR1765708
  5. [5] D. Bertrand, On André's proof of the Siegel-Shidlovsky theorem. Colloque Franco-Japonais: Théorie des Nombres Transcendants (Tokyo, 1998), 51-63, Sem. Math. Sci., 27, Keio Univ., Yokohama, 1999. MR1726524
  6. [6] F. Beukers, Algebraic values of G-fonctions. J. Reine Angew. Math.434 (1993), 45-65. Zbl0753.11024MR1195690
  7. [7] L. Euler, De seriebus divergentibus. In Opera omnia I. 14 Teubner (1925), 601-602. 
  8. [8] M. Gevrey, La nature analytique des solutions des équations aux dérivées partielles. Ann. Sci. École Norm. Sup. (3) 25 (1918), 129-190. Zbl46.0721.01MR1509208JFM46.0721.01
  9. [9] E. Maillet, Sur les séries divergentes et les équations différentielles. Ann. Sci. École Norm. Sup. (1903), 487-518. Zbl34.0282.01MR1509033JFM34.0282.01
  10. [10] O. Perron, Über lineare Differentialgleichungen mit rationalen Koeffizienten. Acta math.34 (1910), 139-163. Zbl42.0329.02JFM42.0329.02
  11. [11] J.-P. Ramis, Séries divergentes et Théories asymptotiques. Panoramas et Synthèses21, SMFParis, 1993. Zbl0830.34045MR1272100
  12. [12] A. Shidlovsky, Transcendental Numbers. de Gruyter Studies in Math. 12, 1989; translation of Transtsendentnye Chisla, Nauka, 1987. Zbl0689.10043MR911106
  13. [13] C.L. Siegel, Über einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. Wiss. Phys.-Math. Kl.1 (1929), 1-70. Zbl56.0180.05JFM56.0180.05
  14. [14] G. Watson, A theory of Asymptotic series. Philos. Trans. Roy. Soc. London Ser. A211 (1911), 279-313. Zbl42.0273.01JFM42.0273.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.