Fundamental domains for Shimura curves

David R. Kohel; Helena A. Verrill

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 205-222
  • ISSN: 1246-7405

Abstract

top
We describe a process for defining and computing a fundamental domain in the upper half plane of a Shimura curve X 0 D ( N ) associated with an order in a quaternion algebra A / 𝐐 . A fundamental domain for X 0 D ( N ) realizes a finite presentation of the quaternion unit group, modulo units of its center. We give explicit examples of domains for the curves X 0 6 ( 1 ) , X 0 15 ( 1 ) , and X 0 35 ( 1 ) . The first example is a classical example of a triangle group and the second is a corrected version of that appearing in the book of Vignéras [13], due to Michon. These examples are also treated in the thesis of Alsina [1]. The final example is new and provides a demonstration of methods to apply when the group action has no elliptic points.

How to cite

top

Kohel, David R., and Verrill, Helena A.. "Fundamental domains for Shimura curves." Journal de théorie des nombres de Bordeaux 15.1 (2003): 205-222. <http://eudml.org/doc/249088>.

@article{Kohel2003,
abstract = {We describe a process for defining and computing a fundamental domain in the upper half plane $\mathcal \{H\}^$ of a Shimura curve $X^D_0 (N)$ associated with an order in a quaternion algebra $A/ \mathbf \{Q\}$. A fundamental domain for $X^D_0 (N)$ realizes a finite presentation of the quaternion unit group, modulo units of its center. We give explicit examples of domains for the curves $X^6_0(1), \, X^\{15\}_0(1), \text\{ and \} X^\{35\}_0 (1)$. The first example is a classical example of a triangle group and the second is a corrected version of that appearing in the book of Vignéras [13], due to Michon. These examples are also treated in the thesis of Alsina [1]. The final example is new and provides a demonstration of methods to apply when the group action has no elliptic points.},
author = {Kohel, David R., Verrill, Helena A.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Shimura curves; fundamental domains; modular curves; quaternion algebras},
language = {eng},
number = {1},
pages = {205-222},
publisher = {Université Bordeaux I},
title = {Fundamental domains for Shimura curves},
url = {http://eudml.org/doc/249088},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Kohel, David R.
AU - Verrill, Helena A.
TI - Fundamental domains for Shimura curves
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 205
EP - 222
AB - We describe a process for defining and computing a fundamental domain in the upper half plane $\mathcal {H}^$ of a Shimura curve $X^D_0 (N)$ associated with an order in a quaternion algebra $A/ \mathbf {Q}$. A fundamental domain for $X^D_0 (N)$ realizes a finite presentation of the quaternion unit group, modulo units of its center. We give explicit examples of domains for the curves $X^6_0(1), \, X^{15}_0(1), \text{ and } X^{35}_0 (1)$. The first example is a classical example of a triangle group and the second is a corrected version of that appearing in the book of Vignéras [13], due to Michon. These examples are also treated in the thesis of Alsina [1]. The final example is new and provides a demonstration of methods to apply when the group action has no elliptic points.
LA - eng
KW - Shimura curves; fundamental domains; modular curves; quaternion algebras
UR - http://eudml.org/doc/249088
ER -

References

top
  1. [1] M. Alsina, Aritmetica d'ordres quaternionics i uniformitzacio hiperbolica de corbes de Shimura. PhD Thesis, Universitat de Barcelona2000, Publicacions Universitat de Barcelona, ISBN: 84-475-2491-4, 2001. 
  2. [2] W. BOSMA, J. CANNON, eds. The Magma Handbook. The University of Sydney, 2002. http://magma.maths.usyd.edu.au/magma/htmlhelp/MAGMA.htm. 
  3. [3] J. Cremona, Algorithms for modular elliptic curves, Second edition. Cambridge University Press, Cambridge, 1997. Zbl0872.14041MR1628193
  4. [4] N. Elkies, Shimura Curve Computations. Algorithmic Number Theory, LNCS1423, J. Buhler, ed, Springer (1998), 1-47. Zbl1010.11030MR1726059
  5. [5] D. Kohel, Endomorphism rings of elliptic curves over finite fields. Thesis, University of California, Berkeley, 1996. 
  6. [6] D. Kohel, Hecke module structure of quaternions. Class field theory—its centenary and prospect (Tokyo, 1998), K. Miyake, ed, Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo (2001), 177-195. Zbl1040.11044MR1846458
  7. [7] D. Kohel, Brandt modules. Chapter in The Magma Handbook, Volume 7, J. Cannon, W. Bosma Eds., (2001), 343-354. 
  8. [8] D. Kohel, Quaternion Algebras. Chapter in The Magma Handbook, Volume 6, J. Cannon, W. Bosma Eds., (2001), 237-256. 
  9. [9] A. Kurihara, On some examples of equations defining Shimura curves and the Mumford uniformization. J. Fac. Sci. Univ. Tokyo25 (1979), 277-301. Zbl0428.14012MR523989
  10. [10] J.-F. Michon, Courbes de Shimura hyperelliptiques. Bull. Soc. Math. France109 (1981), no. 2, 217-225. Zbl0505.14024MR623790
  11. [11] D. Roberts, Shimura curves analogous to X0(N). Ph.D. thesis, Harvard, 1989. 
  12. [12] H. Verrill, Subgroups of PSL2(R), Chapter in The Magma Handbook, Volume 2, J. Cannon, W. Bosma Eds., (2001), 233-254. 
  13. [13] M.-F. Vignéras, Arithmétiques des Algèbres de Quaternions, LNM800, Springer-Verlag, 1980. Zbl0422.12008MR580949

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.