Computing fundamental domains for Fuchsian groups

John Voight[1]

  • [1] Department of Mathematics and Statistics 16 Colchester Avenue University of Vermont Burlington, Vermont 05401-1455, USA

Journal de Théorie des Nombres de Bordeaux (2009)

  • Volume: 21, Issue: 2, page 467-489
  • ISSN: 1246-7405

Abstract

top
We exhibit an algorithm to compute a Dirichlet domain for a Fuchsian group Γ with cofinite area. As a consequence, we compute the invariants of Γ , including an explicit finite presentation for Γ .

How to cite

top

Voight, John. "Computing fundamental domains for Fuchsian groups." Journal de Théorie des Nombres de Bordeaux 21.2 (2009): 467-489. <http://eudml.org/doc/10893>.

@article{Voight2009,
abstract = {We exhibit an algorithm to compute a Dirichlet domain for a Fuchsian group $\Gamma $ with cofinite area. As a consequence, we compute the invariants of $\Gamma $, including an explicit finite presentation for $\Gamma $.},
affiliation = {Department of Mathematics and Statistics 16 Colchester Avenue University of Vermont Burlington, Vermont 05401-1455, USA},
author = {Voight, John},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Fuchsian group; Dirichlet domain; reduction algorithm},
language = {eng},
number = {2},
pages = {467-489},
publisher = {Université Bordeaux 1},
title = {Computing fundamental domains for Fuchsian groups},
url = {http://eudml.org/doc/10893},
volume = {21},
year = {2009},
}

TY - JOUR
AU - Voight, John
TI - Computing fundamental domains for Fuchsian groups
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 2
SP - 467
EP - 489
AB - We exhibit an algorithm to compute a Dirichlet domain for a Fuchsian group $\Gamma $ with cofinite area. As a consequence, we compute the invariants of $\Gamma $, including an explicit finite presentation for $\Gamma $.
LA - eng
KW - Fuchsian group; Dirichlet domain; reduction algorithm
UR - http://eudml.org/doc/10893
ER -

References

top
  1. M. Alsina and P. Bayer, Quaternion orders, quadratic forms, and Shimura curves. CRM monograph series, vol. 22, AMS, Providence, 2004. Zbl1073.11040MR2038122
  2. A. Beardon, The geometry of discrete groups. Grad. Texts in Math., vol. 91, Springer-Verlag, New York, 1995. Zbl0528.30001MR1393195
  3. H.-J. Boehm, The constructive reals as a Java library. J. Log. Algebr. Program. 64 (2005), 3–11. Zbl1080.68005MR2137732
  4. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language.. J. Symbolic Comput., 24 (3–4), 1997, 235–265. Zbl0898.68039MR1484478
  5. K. S. Brown, Cohomology of groups. Grad. Texts in Math., vol. 87, Springer-Verlag, New York, 1982. Zbl0584.20036MR672956
  6. H. Cohen, A course in computational algebraic number theory. Grad. Texts in Math., vol. 138, Springer-Verlag, New York, 1993. Zbl0786.11071MR1228206
  7. H. Cohen, Advanced topics in computational algebraic number theory. Grad. Texts in Math., vol. 193, Springer-Verlag, Berlin, 2000. Zbl0977.11056MR1728313
  8. D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, 2nd ed. Undergrad. Texts in Math., Springer-Verlag, New York, 1997. Zbl0861.13012MR1417938
  9. T. Dokchitser, Computing special values of motivic L -functions. Experiment. Math. 13 (2004), no. 2, 137–149. Zbl1139.11317MR2068888
  10. U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comp. 44 (1985), no. 170, 463–471. Zbl0556.10022MR777278
  11. L. R. Ford, Automorphic functions, 2nd. ed. Chelsea, New York, 1972. 
  12. I.M. Gel’fand, M.I. Graev, and I.I. Pyatetskii-Shapiro, Representation theory and automorphic functions. Trans. K.A. Hirsch, Generalized Functions, vol. 6, Academic Press, Boston, 1990. Zbl0718.11022MR1071179
  13. P. Gowland and D. Lester, A survey of exact computer arithmetic. In Computability and Complexity in Analysis, Lecture Notes in Computer Science, eds. Blanck et al., vol. 2064, Springer, 2001, 30–47. Zbl0985.65043
  14. M. Imbert, Calculs de présentations de groupes fuchsiens via les graphes rubanés. Expo. Math. 19 (2001), no. 3, 213–227. Zbl0988.20035MR1852073
  15. S. Johansson, On fundamental domains of arithmetic Fuchsian groups. Math. Comp 69 (2000), no. 229, 339–349. Zbl0937.11016MR1665958
  16. S. Katok, Fuchsian groups. Chicago Lect. in Math., U. of Chicago Press, Chicago, 1992. Zbl0753.30001MR1177168
  17. S. Katok, Reduction theory for Fuchsian groups. Math. Ann. 273 (1986), no. 3, 461–470. Zbl0561.30036MR824433
  18. D. R. Kohel and H. A. Verrill, Fundamental domains for Shimura curves. Les XXIIèmes Journées Arithmetiques (Lille, 2001), J. Théor. Nombres Bordeaux 15 (2003), no. 1, 205–222. Zbl1044.11052MR2019012
  19. M.B. Pour-El and J.I. Richards, Computability in analysis and physics. Perspect. in Math. Logic, Springer, Berlin, 1989. Zbl0678.03027MR1005942
  20. H. Shimizu, On zeta functions of quaternion algebras. Ann. of Math. (2) 81 (1965), 166–193. Zbl0201.37903MR171771
  21. H. Verrill, Subgroups of PSL 2 ( ) . Handbook of Magma Functions, eds. John Cannon and Wieb Bosma, Edition 2.14 (2007). 
  22. M.-F. Vignéras, Arithmétique des algèbres de quaternions. Lect. Notes in Math., vol. 800, Springer, Berlin, 1980. Zbl0422.12008MR580949
  23. J. Voight, Quadratic forms and quaternion algebras: algorithms and arithmetic. Ph.D. Thesis, University of California, Berkeley, 2005. 
  24. K. Weihrauch, An introduction to computable analysis. Springer-Verlag, New York, 2000. Zbl0956.68056MR1795407

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.