Computing fundamental domains for Fuchsian groups
John Voight[1]
- [1] Department of Mathematics and Statistics 16 Colchester Avenue University of Vermont Burlington, Vermont 05401-1455, USA
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 2, page 467-489
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topVoight, John. "Computing fundamental domains for Fuchsian groups." Journal de Théorie des Nombres de Bordeaux 21.2 (2009): 467-489. <http://eudml.org/doc/10893>.
@article{Voight2009,
abstract = {We exhibit an algorithm to compute a Dirichlet domain for a Fuchsian group $\Gamma $ with cofinite area. As a consequence, we compute the invariants of $\Gamma $, including an explicit finite presentation for $\Gamma $.},
affiliation = {Department of Mathematics and Statistics 16 Colchester Avenue University of Vermont Burlington, Vermont 05401-1455, USA},
author = {Voight, John},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Fuchsian group; Dirichlet domain; reduction algorithm},
language = {eng},
number = {2},
pages = {467-489},
publisher = {Université Bordeaux 1},
title = {Computing fundamental domains for Fuchsian groups},
url = {http://eudml.org/doc/10893},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Voight, John
TI - Computing fundamental domains for Fuchsian groups
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 2
SP - 467
EP - 489
AB - We exhibit an algorithm to compute a Dirichlet domain for a Fuchsian group $\Gamma $ with cofinite area. As a consequence, we compute the invariants of $\Gamma $, including an explicit finite presentation for $\Gamma $.
LA - eng
KW - Fuchsian group; Dirichlet domain; reduction algorithm
UR - http://eudml.org/doc/10893
ER -
References
top- M. Alsina and P. Bayer, Quaternion orders, quadratic forms, and Shimura curves. CRM monograph series, vol. 22, AMS, Providence, 2004. Zbl1073.11040MR2038122
- A. Beardon, The geometry of discrete groups. Grad. Texts in Math., vol. 91, Springer-Verlag, New York, 1995. Zbl0528.30001MR1393195
- H.-J. Boehm, The constructive reals as a Java library. J. Log. Algebr. Program. 64 (2005), 3–11. Zbl1080.68005MR2137732
- W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language.. J. Symbolic Comput., 24 (3–4), 1997, 235–265. Zbl0898.68039MR1484478
- K. S. Brown, Cohomology of groups. Grad. Texts in Math., vol. 87, Springer-Verlag, New York, 1982. Zbl0584.20036MR672956
- H. Cohen, A course in computational algebraic number theory. Grad. Texts in Math., vol. 138, Springer-Verlag, New York, 1993. Zbl0786.11071MR1228206
- H. Cohen, Advanced topics in computational algebraic number theory. Grad. Texts in Math., vol. 193, Springer-Verlag, Berlin, 2000. Zbl0977.11056MR1728313
- D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, 2nd ed. Undergrad. Texts in Math., Springer-Verlag, New York, 1997. Zbl0861.13012MR1417938
- T. Dokchitser, Computing special values of motivic -functions. Experiment. Math. 13 (2004), no. 2, 137–149. Zbl1139.11317MR2068888
- U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comp. 44 (1985), no. 170, 463–471. Zbl0556.10022MR777278
- L. R. Ford, Automorphic functions, 2nd. ed. Chelsea, New York, 1972.
- I.M. Gel’fand, M.I. Graev, and I.I. Pyatetskii-Shapiro, Representation theory and automorphic functions. Trans. K.A. Hirsch, Generalized Functions, vol. 6, Academic Press, Boston, 1990. Zbl0718.11022MR1071179
- P. Gowland and D. Lester, A survey of exact computer arithmetic. In Computability and Complexity in Analysis, Lecture Notes in Computer Science, eds. Blanck et al., vol. 2064, Springer, 2001, 30–47. Zbl0985.65043
- M. Imbert, Calculs de présentations de groupes fuchsiens via les graphes rubanés. Expo. Math. 19 (2001), no. 3, 213–227. Zbl0988.20035MR1852073
- S. Johansson, On fundamental domains of arithmetic Fuchsian groups. Math. Comp 69 (2000), no. 229, 339–349. Zbl0937.11016MR1665958
- S. Katok, Fuchsian groups. Chicago Lect. in Math., U. of Chicago Press, Chicago, 1992. Zbl0753.30001MR1177168
- S. Katok, Reduction theory for Fuchsian groups. Math. Ann. 273 (1986), no. 3, 461–470. Zbl0561.30036MR824433
- D. R. Kohel and H. A. Verrill, Fundamental domains for Shimura curves. Les XXIIèmes Journées Arithmetiques (Lille, 2001), J. Théor. Nombres Bordeaux 15 (2003), no. 1, 205–222. Zbl1044.11052MR2019012
- M.B. Pour-El and J.I. Richards, Computability in analysis and physics. Perspect. in Math. Logic, Springer, Berlin, 1989. Zbl0678.03027MR1005942
- H. Shimizu, On zeta functions of quaternion algebras. Ann. of Math. (2) 81 (1965), 166–193. Zbl0201.37903MR171771
- H. Verrill, Subgroups of . Handbook of Magma Functions, eds. John Cannon and Wieb Bosma, Edition 2.14 (2007).
- M.-F. Vignéras, Arithmétique des algèbres de quaternions. Lect. Notes in Math., vol. 800, Springer, Berlin, 1980. Zbl0422.12008MR580949
- J. Voight, Quadratic forms and quaternion algebras: algorithms and arithmetic. Ph.D. Thesis, University of California, Berkeley, 2005.
- K. Weihrauch, An introduction to computable analysis. Springer-Verlag, New York, 2000. Zbl0956.68056MR1795407
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.