On the n -torsion subgroup of the Brauer group of a number field

Hershy Kisilevsky; Jack Sonn

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 199-204
  • ISSN: 1246-7405

Abstract

top
Given a number field K Galois over the rational field , and a positive integer n prime to the class number of K , there exists an abelian extension L / K (of exponent n ) such that the n -torsion subgroup of the Brauer group of K is equal to the relative Brauer group of L / K .

How to cite

top

Kisilevsky, Hershy, and Sonn, Jack. "On the $n$-torsion subgroup of the Brauer group of a number field." Journal de théorie des nombres de Bordeaux 15.1 (2003): 199-204. <http://eudml.org/doc/249102>.

@article{Kisilevsky2003,
abstract = {Given a number field $K$ Galois over the rational field $\mathbb \{Q\}$, and a positive integer $n$ prime to the class number of $K$, there exists an abelian extension $L/K$ (of exponent $n$) such that the $n$-torsion subgroup of the Brauer group of $K$ is equal to the relative Brauer group of $L/K$.},
author = {Kisilevsky, Hershy, Sonn, Jack},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {1},
pages = {199-204},
publisher = {Université Bordeaux I},
title = {On the $n$-torsion subgroup of the Brauer group of a number field},
url = {http://eudml.org/doc/249102},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Kisilevsky, Hershy
AU - Sonn, Jack
TI - On the $n$-torsion subgroup of the Brauer group of a number field
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 199
EP - 204
AB - Given a number field $K$ Galois over the rational field $\mathbb {Q}$, and a positive integer $n$ prime to the class number of $K$, there exists an abelian extension $L/K$ (of exponent $n$) such that the $n$-torsion subgroup of the Brauer group of $K$ is equal to the relative Brauer group of $L/K$.
LA - eng
UR - http://eudml.org/doc/249102
ER -

References

top
  1. [1] E. Aljadeff, J. Sonn, Relative Brauer groups and m-torsion. Proc. Amer. Math. Soc.130 (2002), 1333-1337. Zbl1099.11066MR1879954
  2. [2] B. Fein, M. Schacher, Relative Brauer groups I. J. Reine Angew. Math.321 (1981), 179-194. Zbl0436.13003MR597988
  3. [3] B. Fein, W. Kantor, M. Schacher, Relative Brauer groups II. J. Reine Angew. Math.328 (1981), 39-57. Zbl0457.13004MR636194
  4. [4] B. Fein, M. Schacher, Relative Brauer groups III. J. Reine Angew. Math.335 (1982), 37-39. Zbl0484.13005MR667461

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.