On the -torsion subgroup of the Brauer group of a number field

Hershy Kisilevsky; Jack Sonn

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 199-204
  • ISSN: 1246-7405

Abstract

top
Given a number field Galois over the rational field , and a positive integer prime to the class number of , there exists an abelian extension (of exponent ) such that the -torsion subgroup of the Brauer group of is equal to the relative Brauer group of .

How to cite

top

Kisilevsky, Hershy, and Sonn, Jack. "On the $n$-torsion subgroup of the Brauer group of a number field." Journal de théorie des nombres de Bordeaux 15.1 (2003): 199-204. <http://eudml.org/doc/249102>.

@article{Kisilevsky2003,
abstract = {Given a number field $K$ Galois over the rational field $\mathbb \{Q\}$, and a positive integer $n$ prime to the class number of $K$, there exists an abelian extension $L/K$ (of exponent $n$) such that the $n$-torsion subgroup of the Brauer group of $K$ is equal to the relative Brauer group of $L/K$.},
author = {Kisilevsky, Hershy, Sonn, Jack},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {1},
pages = {199-204},
publisher = {Université Bordeaux I},
title = {On the $n$-torsion subgroup of the Brauer group of a number field},
url = {http://eudml.org/doc/249102},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Kisilevsky, Hershy
AU - Sonn, Jack
TI - On the $n$-torsion subgroup of the Brauer group of a number field
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 199
EP - 204
AB - Given a number field $K$ Galois over the rational field $\mathbb {Q}$, and a positive integer $n$ prime to the class number of $K$, there exists an abelian extension $L/K$ (of exponent $n$) such that the $n$-torsion subgroup of the Brauer group of $K$ is equal to the relative Brauer group of $L/K$.
LA - eng
UR - http://eudml.org/doc/249102
ER -

References

top
  1. [1] E. Aljadeff, J. Sonn, Relative Brauer groups and m-torsion. Proc. Amer. Math. Soc.130 (2002), 1333-1337. Zbl1099.11066MR1879954
  2. [2] B. Fein, M. Schacher, Relative Brauer groups I. J. Reine Angew. Math.321 (1981), 179-194. Zbl0436.13003MR597988
  3. [3] B. Fein, W. Kantor, M. Schacher, Relative Brauer groups II. J. Reine Angew. Math.328 (1981), 39-57. Zbl0457.13004MR636194
  4. [4] B. Fein, M. Schacher, Relative Brauer groups III. J. Reine Angew. Math.335 (1982), 37-39. Zbl0484.13005MR667461

NotesEmbed ?

top

You must be logged in to post comments.