Kisilevsky, Hershy, and Sonn, Jack. "On the $n$-torsion subgroup of the Brauer group of a number field." Journal de théorie des nombres de Bordeaux 15.1 (2003): 199-204. <http://eudml.org/doc/249102>.
@article{Kisilevsky2003,
abstract = {Given a number field $K$ Galois over the rational field $\mathbb \{Q\}$, and a positive integer $n$ prime to the class number of $K$, there exists an abelian extension $L/K$ (of exponent $n$) such that the $n$-torsion subgroup of the Brauer group of $K$ is equal to the relative Brauer group of $L/K$.},
author = {Kisilevsky, Hershy, Sonn, Jack},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {1},
pages = {199-204},
publisher = {Université Bordeaux I},
title = {On the $n$-torsion subgroup of the Brauer group of a number field},
url = {http://eudml.org/doc/249102},
volume = {15},
year = {2003},
}
TY - JOUR
AU - Kisilevsky, Hershy
AU - Sonn, Jack
TI - On the $n$-torsion subgroup of the Brauer group of a number field
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 199
EP - 204
AB - Given a number field $K$ Galois over the rational field $\mathbb {Q}$, and a positive integer $n$ prime to the class number of $K$, there exists an abelian extension $L/K$ (of exponent $n$) such that the $n$-torsion subgroup of the Brauer group of $K$ is equal to the relative Brauer group of $L/K$.
LA - eng
UR - http://eudml.org/doc/249102
ER -