On Minkowski units constructed by special values of Siegel modular functions

Takashi Fukuda; Keiichi Komatsu

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 133-140
  • ISSN: 1246-7405

Abstract

top
Using the special values of Siegel modular functions, we construct Minkowski units for the ray class field k 6 of ( e x p ( 2 π i / 5 ) ) modulo 6 . Our work is based on investigating the prime decomposition of the special values and describing explicitly the action of the Galois group G ( k 6 / ) for the special values. Futhermore we construct the full unit group of k 6 using modular and circular units under the GRH.

How to cite

top

Fukuda, Takashi, and Komatsu, Keiichi. "On Minkowski units constructed by special values of Siegel modular functions." Journal de théorie des nombres de Bordeaux 15.1 (2003): 133-140. <http://eudml.org/doc/249104>.

@article{Fukuda2003,
abstract = {Using the special values of Siegel modular functions, we construct Minkowski units for the ray class field $k_6$ of $\mathbb \{Q\}(exp(2\pi i/5))$ modulo $6$. Our work is based on investigating the prime decomposition of the special values and describing explicitly the action of the Galois group $G(k_6/ \mathbb \{Q\})$ for the special values. Futhermore we construct the full unit group of $k_6$ using modular and circular units under the GRH.},
author = {Fukuda, Takashi, Komatsu, Keiichi},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {1},
pages = {133-140},
publisher = {Université Bordeaux I},
title = {On Minkowski units constructed by special values of Siegel modular functions},
url = {http://eudml.org/doc/249104},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Fukuda, Takashi
AU - Komatsu, Keiichi
TI - On Minkowski units constructed by special values of Siegel modular functions
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 133
EP - 140
AB - Using the special values of Siegel modular functions, we construct Minkowski units for the ray class field $k_6$ of $\mathbb {Q}(exp(2\pi i/5))$ modulo $6$. Our work is based on investigating the prime decomposition of the special values and describing explicitly the action of the Galois group $G(k_6/ \mathbb {Q})$ for the special values. Futhermore we construct the full unit group of $k_6$ using modular and circular units under the GRH.
LA - eng
UR - http://eudml.org/doc/249104
ER -

References

top
  1. [1] T. Fukuda, K. Komatsu, On a unit group generated by special values of Siegel modular functions. Math. Comp.69 (2000), 1207-1212. Zbl1037.11043MR1651753
  2. [2] J. Igusa, Modular forms and projective invariants. Amer. J. Math.89 (1967), 817-855. Zbl0159.50401MR229643
  3. [3] Keichii Komatsu, Construction of a normal basis by special values of Siegel modular functions. Proc. Amer. Math. Soc.128 (2000), 315-323. Zbl0965.11043MR1707153
  4. [4] Kenzo Komatsu, . J. Reine Angew. Math.288 (1976), 152-154. Zbl0335.12016
  5. [5] G. Shimura, Theta functions with complex multiplication. Duke Math. J.43 (1976), 673-696. Zbl0371.14022MR424705

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.