Displaying similar documents to “On Minkowski units constructed by special values of Siegel modular functions”

Arithmetic of the modular function j 1 , 4

Chang Heon Kim, Ja Kyung Koo (1998)

Acta Arithmetica

Similarity:

We find a generator j 1 , 4 of the function field on the modular curve X₁(4) by means of classical theta functions θ₂ and θ₃, and estimate the normalized generator N ( j 1 , 4 ) which becomes the Thompson series of type 4C. With these modular functions we investigate some number theoretic properties.

On elliptic Galois representations and genus-zero modular units

Julio Fernández, Joan-C. Lario (2007)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Given an odd prime   p   and a representation ϱ   of the absolute Galois group of a number field k onto PGL 2 ( 𝔽 p ) with cyclotomic determinant, the moduli space of elliptic curves defined over k with p -torsion giving rise to ϱ consists of two twists of the modular curve X ( p ) . We make here explicit the only genus-zero cases p = 3 and p = 5 , which are also the only cases: PGL 2 ( 𝔽 p ) 𝒮 n for n = 4 or n = 5 , respectively. This is done by studying the corresponding twisted Galois actions on the function field of the curve, for which...

The second moment of quadratic twists of modular L-functions

K. Soundararajan, Matthew P. Young (2010)

Journal of the European Mathematical Society

Similarity:

We study the second moment of the central values of quadratic twists of a modular L -function. Unconditionally, we obtain a lower bound which matches the conjectured asymptotic formula, while on GRH we prove the asymptotic formula itself.

Bounds on sup-norms of half-integral weight modular forms

Eren Mehmet Kıral (2014)

Acta Arithmetica

Similarity:

Bounding sup-norms of modular forms in terms of the level has been the focus of much recent study. In this work the sup-norm of a half-integral weight cusp form is bounded in terms of the level: we prove that | | y κ / 2 f ̃ | | ε , κ N 1 / 2 - 1 / 18 + ε | | y κ / 2 f ̃ | | L 2 for a modular form f̃ of level 4N and weight κ, a half-integer.

On the slopes of the  U 5 operator acting on overconvergent modular forms

L. J. P Kilford (2008)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We show that the slopes of the  U 5 operator acting on 5-adic overconvergent modular forms of weight  k with primitive Dirichlet character  χ of conductor 25 are given by either 1 4 · 8 i 5 : i or 1 4 · 8 i + 4 5 : i , depending on  k and  χ . We also prove that the space of classical cusp forms of weight  k and character  χ has a basis of eigenforms for the Hecke operators  T p and  U 5 which is defined over  Q 5 ( 5 4 , 3 ) .

Overconvergent modular forms

Vincent Pilloni (2013)

Annales de l’institut Fourier

Similarity:

We give a geometric definition of overconvergent modular forms of any p -adic weight. As an application, we reprove Coleman’s theory of p -adic families of modular forms and reconstruct the eigencurve of Coleman and Mazur without using the Eisenstein family.

An integrality criterion for elliptic modular forms

Andrea Mori (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Let f be an elliptic modular form level of N. We present a criterion for the integrality of f at primes not dividing N. The result is in terms of the values at CM points of the forms obtained applying to f the iterates of the Maaß differential operators.

Classical and overconvergent modular forms of higher level

Robert F. Coleman (1997)

Journal de théorie des nombres de Bordeaux

Similarity:

We define the notion overconvergent modular forms on Γ 1 ( N p n ) where p is a prime, N and n are positive integers and N is prime to p . We show that an overconvergent eigenform on Γ 1 ( N p n ) of weight k whose U p -eigenvalue has valuation strictly less than k - 1 is classical.