# Combinatorial properties of infinite words associated with cut-and-project sequences

Louis-Sébastien Guimond; Zuzana Masáková; Edita Pelantová

Journal de théorie des nombres de Bordeaux (2003)

- Volume: 15, Issue: 3, page 697-725
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topGuimond, Louis-Sébastien, Masáková, Zuzana, and Pelantová, Edita. "Combinatorial properties of infinite words associated with cut-and-project sequences." Journal de théorie des nombres de Bordeaux 15.3 (2003): 697-725. <http://eudml.org/doc/249105>.

@article{Guimond2003,

abstract = {The aim of this article is to study certain combinatorial properties of infinite binary and ternary words associated to cut-and-project sequences. We consider here the cut-and-project scheme in two dimensions with general orientation of the projecting subspaces. We prove that a cut-and-project sequence arising in such a setting has always either two or three types of distances between adjacent points. A cut-and-project sequence thus determines in a natural way a symbolic sequence (infinite word) in two or three letters. In fact, these sequences can be constructed also by a coding of a $2$- or $3$-interval exchange transformation. According to the complexity the cut-and-project construction includes words with complexity $n + 1, n +$ const. and $2n + 1$. The words on two letter alphabet have complexity $n + 1$ and thus are Sturmian. The ternary words associated to the cut-and-project sequences have complexity $n +$ const. or $2n + 1$. A cut-and-project scheme has three parameters, two of them specifying the projection subspaces, the third one determining the cutting strip. We classify the triples that correspond to combinatorially equivalent infinite words.},

author = {Guimond, Louis-Sébastien, Masáková, Zuzana, Pelantová, Edita},

journal = {Journal de théorie des nombres de Bordeaux},

keywords = {cut-and-project sequences; Sturmian sequences; three-interval exchanges},

language = {eng},

number = {3},

pages = {697-725},

publisher = {Université Bordeaux I},

title = {Combinatorial properties of infinite words associated with cut-and-project sequences},

url = {http://eudml.org/doc/249105},

volume = {15},

year = {2003},

}

TY - JOUR

AU - Guimond, Louis-Sébastien

AU - Masáková, Zuzana

AU - Pelantová, Edita

TI - Combinatorial properties of infinite words associated with cut-and-project sequences

JO - Journal de théorie des nombres de Bordeaux

PY - 2003

PB - Université Bordeaux I

VL - 15

IS - 3

SP - 697

EP - 725

AB - The aim of this article is to study certain combinatorial properties of infinite binary and ternary words associated to cut-and-project sequences. We consider here the cut-and-project scheme in two dimensions with general orientation of the projecting subspaces. We prove that a cut-and-project sequence arising in such a setting has always either two or three types of distances between adjacent points. A cut-and-project sequence thus determines in a natural way a symbolic sequence (infinite word) in two or three letters. In fact, these sequences can be constructed also by a coding of a $2$- or $3$-interval exchange transformation. According to the complexity the cut-and-project construction includes words with complexity $n + 1, n +$ const. and $2n + 1$. The words on two letter alphabet have complexity $n + 1$ and thus are Sturmian. The ternary words associated to the cut-and-project sequences have complexity $n +$ const. or $2n + 1$. A cut-and-project scheme has three parameters, two of them specifying the projection subspaces, the third one determining the cutting strip. We classify the triples that correspond to combinatorially equivalent infinite words.

LA - eng

KW - cut-and-project sequences; Sturmian sequences; three-interval exchanges

UR - http://eudml.org/doc/249105

ER -

## References

top- [1] B. Adamczewski, Codages de rotations et phénomènes d'autosimilarité: J. Théor. Nombres Bordeaux14 (2002), 351-386. Zbl1113.37003MR2040682
- [2] P. Alessandri, V. Berthé, Autour du théorème des trois longueurs. Enseign. Math.44 (1998), 103-132. Zbl0997.11051MR1643286
- [3] J.P. Allouche, Sur la complexité des suites infinies. Bull. Belg. Math. Soc.1 (1994), 133-143. Zbl0803.68094MR1318964
- [4] P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité 2n+1. Bull. Soc. Math. France119 (1991), 199-215. Zbl0789.28011MR1116845
- [5] P. Balái, Z. Masáková, E. Pelantová, Cut-and-project sequences invariant under morphism. In preparation, Czech Technical University, (2003)
- [6] P. Balái, E. Pelantová, Selfsimilar Cut-and-project Sequences. To be published in Proceedings of Group 24, Paris2002.
- [7] V. Berthé, Sequences of low complexity: automatic and sturmian sequences. Topics in Symbolic Dynamics and Applications, Eds. F. Blanchard, A. Maass, A. Nogueira, Cambridge Univ. Press (2000), 1-34. Zbl0976.11014MR1776754
- [8] J. Cassaigne, Sequences with grouped factors. Developments in Language Theory III, Thessaloniki, Aristotle University of Thessaloniky (1998), 211-222. Available at ftp://iml.univ-mrs.fr/pub/cassaigne/publis/grouped.ps.gz.
- [9] E.M. Coven, G.A. Hedlund, Sequences with minimal block growth. Math. Systems Theory7 (1973), 138-153. Zbl0256.54028MR322838
- [10] S. Ferenczi, Complexity of Sequences and Dynamical Systems. Discrete Math.206 (1999), 663-682. Zbl0858.68051MR1665394
- [11] S. Ferenczi, C. Holton, L.Q. Zamboni, Structure of three interval exchange transformations I: An arithmetic study. Ann. Inst. Fourier (Grenoble) 51 (2001), 861-901. http://citeseer.nj.nec.com/article/ferenczi01structure.html Zbl1029.11036MR1849209
- [12] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science. Second edition, Addison Wesley, Reading MA, 1994. Zbl0836.00001MR1397498
- [13] M. Langevin, Stimulateur cardiaque et suites de Farey. Period. Math. Hungar.23 (1991), 75-86. Zbl0763.11007MR1141354
- [14] M. Lothaire, Algebraic Combinatorics on Words. Chapter 2: Sturmian words, by J. Berstel, P. Séébold, Cambridge University Press, (2002), 45-110. Zbl1001.68093MR1905123
- [15] W.F. Lunnon, P.A.B. Pleasants, Characterization of two-distance sequences. J. Austral. Math. Soc. (Series A) 53 (1992), 198-218. Zbl0759.11005MR1175712
- [16] Z. Masáková, J. Patera, E. Pelantová, Substitution rules for aperiodic sequences of the cut-and-project type. J. Phys. A: Math. Gen.33 (2000), 8867-8886. Zbl0978.11006MR1801473
- [17] M. Morse, G.A. Hedlund, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math.62 (1940), 1-42. Zbl0022.34003MR745JFM66.0188.03
- [18] R.V. Moody, Meyer sets and their duals, in Mathematics of Long Range Aperiodic Order. Proc. NATO ASI, Waterloo, 1996, ed. R. V. Moody, Kluwer (1996), 403-441. Zbl0880.43008MR1460032
- [19] R.V. Moody, J. Patera, Densities, minimal distances, and coverings of quasicrystals. Comm. Math. Phys.195 (1998), 613-626. Zbl0929.52017MR1641011
- [20] Jan Patera, http://kmlinux.fjfi.cvut.cz/-patera/makerule.cgi.
- [21] N.B. Slatter, Gaps and steps for the sequence nθ mod 1. Proc. Camb. Phil. Soc.63 (1967), 1115-1123. Zbl0178.04703
- [22] H. Weyl, Über die Gleichungverteilung von Zahlen mod. Eins. Math. Ann.77 (1916), 313-352. Zbl46.0278.06MR1511862JFM46.0278.06