Integers in number systems with positive and negative quadratic Pisot base

Z. Masáková; T. Vávra

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2014)

  • Volume: 48, Issue: 3, page 341-367
  • ISSN: 0988-3754

Abstract

top
We consider numeration systems with base β and − β, for quadratic Pisot numbers β and focus on comparing the combinatorial structure of the sets Zβ and Z− β of numbers with integer expansion in base β, resp. − β. Our main result is the comparison of languages of infinite words uβ and u− β coding the ordering of distances between consecutive β- and (− β)-integers. It turns out that for a class of roots β of x2 − mx − m, the languages coincide, while for other quadratic Pisot numbers the language of uβ can be identified only with the language of a morphic image of u− β. We also study the group structure of (− β)-integers.

How to cite

top

Masáková, Z., and Vávra, T.. "Integers in number systems with positive and negative quadratic Pisot base." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 48.3 (2014): 341-367. <http://eudml.org/doc/273038>.

@article{Masáková2014,
abstract = {We consider numeration systems with base β and − β, for quadratic Pisot numbers β and focus on comparing the combinatorial structure of the sets Zβ and Z− β of numbers with integer expansion in base β, resp. − β. Our main result is the comparison of languages of infinite words uβ and u− β coding the ordering of distances between consecutive β- and (− β)-integers. It turns out that for a class of roots β of x2 − mx − m, the languages coincide, while for other quadratic Pisot numbers the language of uβ can be identified only with the language of a morphic image of u− β. We also study the group structure of (− β)-integers.},
author = {Masáková, Z., Vávra, T.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {quadratic Pisot numbers; beta-integers; negative base},
language = {eng},
number = {3},
pages = {341-367},
publisher = {EDP-Sciences},
title = {Integers in number systems with positive and negative quadratic Pisot base},
url = {http://eudml.org/doc/273038},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Masáková, Z.
AU - Vávra, T.
TI - Integers in number systems with positive and negative quadratic Pisot base
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 3
SP - 341
EP - 367
AB - We consider numeration systems with base β and − β, for quadratic Pisot numbers β and focus on comparing the combinatorial structure of the sets Zβ and Z− β of numbers with integer expansion in base β, resp. − β. Our main result is the comparison of languages of infinite words uβ and u− β coding the ordering of distances between consecutive β- and (− β)-integers. It turns out that for a class of roots β of x2 − mx − m, the languages coincide, while for other quadratic Pisot numbers the language of uβ can be identified only with the language of a morphic image of u− β. We also study the group structure of (− β)-integers.
LA - eng
KW - quadratic Pisot numbers; beta-integers; negative base
UR - http://eudml.org/doc/273038
ER -

References

top
  1. [1] B. Adamczewski, Balances for fixed points of primitive substitutions. Theoret. Comput. Sci.307 (2003) 47–75. Zbl1059.68083MR2014730
  2. [2] P. Ambrož, D. Dombek, Z. Masáková and E. Pelantová, Numbers with integer expansion in the numeration system with negative base. Funct. Approx. Comment. Math.47 (2012) 241–266. Zbl1271.11009MR3051451
  3. [3] L. Balková, E. Pelantová and Š. Starosta, Sturmian jungle (or garden?) on multilateral alphabets. RAIRO: ITA 44 (2010) 443–470. Zbl1211.68295MR2775406
  4. [4] L. Balková, E. Pelantová and O. Turek, Combinatorial and Arithmetical Properties of Infinite Words Associated with Non-simple Quadratic Parry Numbers. RAIRO: ITA 41 (2007) 307–328. Zbl1144.11009MR2354360
  5. [5] F. Bassino, β-expansions for cubic Pisot numbers, in Proc. of 5th Latin American Theoretical Informatics Symposium, LATIN’02. Vol. 2286 Lect. Note Comput. Sci. Springer-Verlag (2002) 141–152. Zbl1152.11342MR1966122
  6. [6] Č. Burdík, Ch. Frougny, J.P. Gazeau and R. Krejcar, Beta-Integers as Natural Counting Systems for Quasicrystals. J. Phys. A: Math. Gen. 31 (1998) 6449–6472. Zbl0941.52019MR1644115
  7. [7] A. Elkharrat, Ch. Frougny, J.P. Gazeau and J.-L. Verger-Gaugry, Symmetry groups for beta-lattices. Theoret. Comput. Sci.319 (2004) 281–305. Zbl1068.52028MR2074957
  8. [8] S. Fabre, Substitutions et β-systèmes de numération. Theoret. Comput. Sci.137 (1995) 219–236. Zbl0872.11017MR1311222
  9. [9] P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, edited by V. Berthé, S. Ferenczi, C. Mauduit, A. Siegel, vol. 1794 of Lect. Note Math. Ser. Springer (2002). Zbl1014.11015MR1970385
  10. [10] P. Góra, Invariant densities for generalized β-maps. Ergodic Theory Dyn. Systems27 (2007) 1583–1598. Zbl1123.37015MR2358979
  11. [11] L.S. Guimond, Z. Masáková and E. Pelantová, Combinatorial properties of infinite words associated with cut-and-project sequences, J. Théor. Nombres Bordeaux15 (2003) 697–725. Zbl1076.68055MR2142232
  12. [12] S. Ito and T. Sadahiro, (− β)-expansions of real numbers. Integers 9 (2009) 239–259. Zbl1191.11005MR2534912
  13. [13] C. Kalle, Isomorphisms between positive and negative beta-transformations, Ergodic Theory Dyn. Systems32 (2014) 153–170. Zbl1287.37024MR3163028
  14. [14] L. Liao and W. Steiner, Dynamical properties of the negative beta-transformation. Ergodic Theory Dyn. Systems32 (2012) 1673–1690. Zbl1266.37017MR2974214
  15. [15] M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (2002). Zbl1221.68183MR1905123
  16. [16] M. Morse and G. Hedlund, Symbolic dynamics II: Sturmian sequences. Amer. J. Math.61 (1940) 1–42. Zbl0022.34003MR745JFM66.0188.03
  17. [17] Z. Masáková and E. Pelantová, Purely periodic expansions in systems with negative base. Acta Math. Hungar139 (2013) 208–227. Zbl1286.11118
  18. [18] Z. Masáková, E. Pelantová and T. Vávra, Arithmetics in number systems with negative base. Theoret. Comput. Sci.412 (2011) 835–845. Zbl1226.11015
  19. [19] Z. Masáková and T. Vávra, Numeration systems with negative base β for quadratic Pisot numbers. Kybernetika47 (2011) 74–92. Zbl1227.11033
  20. [20] R.V. Moody, Model sets: A Survey, in From Quasicrystals to More Complex Systems (Les Houches) edited by F. Axel, F. Denoyer, J.-P. Gazeau. Springer (2000). 
  21. [21] W. Parry, On the β-expansions of real numbers. Acta Math. Acad. Sci. Hung.11 (1960) 401–416. Zbl0099.28103MR142719
  22. [22] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung.8 (1957) 477–493. Zbl0079.08901MR97374
  23. [23] M. Rigo, P. Salimov and E. Vandomme, Some properties of abelian return words. J. Integer Sequences 16 (2013) 13.2.5. Zbl1297.68195MR3032388
  24. [24] W. Steiner, On the structure of (− β)-integers. RAIRO: ITA 46 (2012) 181–200. Zbl1319.11006MR2904969
  25. [25] W.P. Thurston, Groups, tilings, and finite state automata. AMS Colloquium Lecture Notes. American Mathematical Society, Boulder (1989). 
  26. [26] O. Turek, Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers. RAIRO: ITA 41 (2007) 123–135. Zbl1146.68410MR2350639

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.