Integers in number systems with positive and negative quadratic Pisot base
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2014)
- Volume: 48, Issue: 3, page 341-367
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topMasáková, Z., and Vávra, T.. "Integers in number systems with positive and negative quadratic Pisot base." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 48.3 (2014): 341-367. <http://eudml.org/doc/273038>.
@article{Masáková2014,
abstract = {We consider numeration systems with base β and − β, for quadratic Pisot numbers β and focus on comparing the combinatorial structure of the sets Zβ and Z− β of numbers with integer expansion in base β, resp. − β. Our main result is the comparison of languages of infinite words uβ and u− β coding the ordering of distances between consecutive β- and (− β)-integers. It turns out that for a class of roots β of x2 − mx − m, the languages coincide, while for other quadratic Pisot numbers the language of uβ can be identified only with the language of a morphic image of u− β. We also study the group structure of (− β)-integers.},
author = {Masáková, Z., Vávra, T.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {quadratic Pisot numbers; beta-integers; negative base},
language = {eng},
number = {3},
pages = {341-367},
publisher = {EDP-Sciences},
title = {Integers in number systems with positive and negative quadratic Pisot base},
url = {http://eudml.org/doc/273038},
volume = {48},
year = {2014},
}
TY - JOUR
AU - Masáková, Z.
AU - Vávra, T.
TI - Integers in number systems with positive and negative quadratic Pisot base
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 3
SP - 341
EP - 367
AB - We consider numeration systems with base β and − β, for quadratic Pisot numbers β and focus on comparing the combinatorial structure of the sets Zβ and Z− β of numbers with integer expansion in base β, resp. − β. Our main result is the comparison of languages of infinite words uβ and u− β coding the ordering of distances between consecutive β- and (− β)-integers. It turns out that for a class of roots β of x2 − mx − m, the languages coincide, while for other quadratic Pisot numbers the language of uβ can be identified only with the language of a morphic image of u− β. We also study the group structure of (− β)-integers.
LA - eng
KW - quadratic Pisot numbers; beta-integers; negative base
UR - http://eudml.org/doc/273038
ER -
References
top- [1] B. Adamczewski, Balances for fixed points of primitive substitutions. Theoret. Comput. Sci.307 (2003) 47–75. Zbl1059.68083MR2014730
- [2] P. Ambrož, D. Dombek, Z. Masáková and E. Pelantová, Numbers with integer expansion in the numeration system with negative base. Funct. Approx. Comment. Math.47 (2012) 241–266. Zbl1271.11009MR3051451
- [3] L. Balková, E. Pelantová and Š. Starosta, Sturmian jungle (or garden?) on multilateral alphabets. RAIRO: ITA 44 (2010) 443–470. Zbl1211.68295MR2775406
- [4] L. Balková, E. Pelantová and O. Turek, Combinatorial and Arithmetical Properties of Infinite Words Associated with Non-simple Quadratic Parry Numbers. RAIRO: ITA 41 (2007) 307–328. Zbl1144.11009MR2354360
- [5] F. Bassino, β-expansions for cubic Pisot numbers, in Proc. of 5th Latin American Theoretical Informatics Symposium, LATIN’02. Vol. 2286 Lect. Note Comput. Sci. Springer-Verlag (2002) 141–152. Zbl1152.11342MR1966122
- [6] Č. Burdík, Ch. Frougny, J.P. Gazeau and R. Krejcar, Beta-Integers as Natural Counting Systems for Quasicrystals. J. Phys. A: Math. Gen. 31 (1998) 6449–6472. Zbl0941.52019MR1644115
- [7] A. Elkharrat, Ch. Frougny, J.P. Gazeau and J.-L. Verger-Gaugry, Symmetry groups for beta-lattices. Theoret. Comput. Sci.319 (2004) 281–305. Zbl1068.52028MR2074957
- [8] S. Fabre, Substitutions et β-systèmes de numération. Theoret. Comput. Sci.137 (1995) 219–236. Zbl0872.11017MR1311222
- [9] P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, edited by V. Berthé, S. Ferenczi, C. Mauduit, A. Siegel, vol. 1794 of Lect. Note Math. Ser. Springer (2002). Zbl1014.11015MR1970385
- [10] P. Góra, Invariant densities for generalized β-maps. Ergodic Theory Dyn. Systems27 (2007) 1583–1598. Zbl1123.37015MR2358979
- [11] L.S. Guimond, Z. Masáková and E. Pelantová, Combinatorial properties of infinite words associated with cut-and-project sequences, J. Théor. Nombres Bordeaux15 (2003) 697–725. Zbl1076.68055MR2142232
- [12] S. Ito and T. Sadahiro, (− β)-expansions of real numbers. Integers 9 (2009) 239–259. Zbl1191.11005MR2534912
- [13] C. Kalle, Isomorphisms between positive and negative beta-transformations, Ergodic Theory Dyn. Systems32 (2014) 153–170. Zbl1287.37024MR3163028
- [14] L. Liao and W. Steiner, Dynamical properties of the negative beta-transformation. Ergodic Theory Dyn. Systems32 (2012) 1673–1690. Zbl1266.37017MR2974214
- [15] M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (2002). Zbl1221.68183MR1905123
- [16] M. Morse and G. Hedlund, Symbolic dynamics II: Sturmian sequences. Amer. J. Math.61 (1940) 1–42. Zbl0022.34003MR745JFM66.0188.03
- [17] Z. Masáková and E. Pelantová, Purely periodic expansions in systems with negative base. Acta Math. Hungar139 (2013) 208–227. Zbl1286.11118
- [18] Z. Masáková, E. Pelantová and T. Vávra, Arithmetics in number systems with negative base. Theoret. Comput. Sci.412 (2011) 835–845. Zbl1226.11015
- [19] Z. Masáková and T. Vávra, Numeration systems with negative base β for quadratic Pisot numbers. Kybernetika47 (2011) 74–92. Zbl1227.11033
- [20] R.V. Moody, Model sets: A Survey, in From Quasicrystals to More Complex Systems (Les Houches) edited by F. Axel, F. Denoyer, J.-P. Gazeau. Springer (2000).
- [21] W. Parry, On the β-expansions of real numbers. Acta Math. Acad. Sci. Hung.11 (1960) 401–416. Zbl0099.28103MR142719
- [22] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung.8 (1957) 477–493. Zbl0079.08901MR97374
- [23] M. Rigo, P. Salimov and E. Vandomme, Some properties of abelian return words. J. Integer Sequences 16 (2013) 13.2.5. Zbl1297.68195MR3032388
- [24] W. Steiner, On the structure of (− β)-integers. RAIRO: ITA 46 (2012) 181–200. Zbl1319.11006MR2904969
- [25] W.P. Thurston, Groups, tilings, and finite state automata. AMS Colloquium Lecture Notes. American Mathematical Society, Boulder (1989).
- [26] O. Turek, Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers. RAIRO: ITA 41 (2007) 123–135. Zbl1146.68410MR2350639
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.