The complex geometry of an integrable system

Ahmed Lesfari

Archivum Mathematicum (2003)

  • Volume: 039, Issue: 4, page 257-270
  • ISSN: 0044-8753

Abstract

top
In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization 2 , 8 and that the flow of the system can be linearized on it.

How to cite

top

Lesfari, Ahmed. "The complex geometry of an integrable system." Archivum Mathematicum 039.4 (2003): 257-270. <http://eudml.org/doc/249126>.

@article{Lesfari2003,
abstract = {In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization $\left( 2,8\right) $ and that the flow of the system can be linearized on it.},
author = {Lesfari, Ahmed},
journal = {Archivum Mathematicum},
keywords = {integrable systems; curves; abelian varieties; abelian varieties; linearized flow; complex algebraic torus},
language = {eng},
number = {4},
pages = {257-270},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The complex geometry of an integrable system},
url = {http://eudml.org/doc/249126},
volume = {039},
year = {2003},
}

TY - JOUR
AU - Lesfari, Ahmed
TI - The complex geometry of an integrable system
JO - Archivum Mathematicum
PY - 2003
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 039
IS - 4
SP - 257
EP - 270
AB - In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization $\left( 2,8\right) $ and that the flow of the system can be linearized on it.
LA - eng
KW - integrable systems; curves; abelian varieties; abelian varieties; linearized flow; complex algebraic torus
UR - http://eudml.org/doc/249126
ER -

References

top
  1. Adler M., van Moerbeke P., The algebraic complete integrability of geodesic flow on S O ( 4 ) , Invent. Math. 67 (1982), 297–331. (1982) MR0665159
  2. Arbarello E., Cornalba M., Griffiths P. A., Harris J., Geometry of algebraic curves I, Springer-Verlag, 1994. (1994) 
  3. Arnold V. I., Mathematical methods in classical mechanics, Springer-Verlag, Berlin-Heidelberg-New York, 1978. (1978) MR0690288
  4. Belokolos E. D., Bobenko A. I., Enolskii V. Z., Its A. R., Matveev V. B., Algebro-Geometric approach to nonlinear integrable equations, Springer-Verlag, 1994. (1994) 
  5. Christiansen P. L., Eilbeck J. C., Enolskii V. Z., Kostov N. A., Quasi-periodic solutions of the coupled nonlinear Schrödinger equations, Proc. Roy. Soc. London Ser. A 451 (1995), 685–700. (1995) MR1369055
  6. Griffiths P. A., Harris J., Principles of algebraic geometry, Wiley-Interscience, 1978. (1978) Zbl0408.14001MR0507725
  7. Haine L., Geodesic flow on S O ( 4 ) and Abelian surfaces, Math. Ann. 263 (1983), 435–472. (1983) Zbl0521.58042MR0707241
  8. Lesfari A., Une approche systématique à la résolution du corps solide de Kowalewski, C. R. Acad. Sc. Paris, série I, t. 302 (1986), 347–350. (1986) MR0837502
  9. Lesfari A., Abelian surfaces and Kowalewski’s top, Ann. Scient. École Norm. Sup. 4, 21 (1988), 193–223. (1988) Zbl0667.58019MR0956766
  10. Lesfari A., On affine surface that can be completed by a smooth curve, Results Math. 35 (1999), 107–118. (1999) Zbl0947.14022MR1678068
  11. Lesfari A., Une méthode de compactification de variétés liées aux systèmes dynamiques, Les cahiers de la recherche, Rectorat-Université Hassan II-Aïn Chock, Casablanca, Maroc, Vol. I, No. 1, (1999), 147–157. (1999) 
  12. Lesfari A., Geodesic flow on S O ( 4 ) , Kac-Moody Lie algebra and singularities in the complex t-plane, Publ. Mat. 43 (1999), 261–279. (1999) MR1697525
  13. Lesfari A., Completely integrable systems: Jacobi’s heritage, J. Geom. Phys. 31 (1999), 265–286. (1999) Zbl0937.37046MR1711527
  14. Lesfari A., The problem of the motion of a solid in an ideal fluid. Integration of the Clebsch’s case, Nonlinear Differential Equations Appl. 8 (2001), 1–13. Zbl0982.35085MR1828945
  15. Lesfari A., The generalized Hénon-Heiles system, Abelian surfaces and algebraic complete integrability, Rep. Math. Phys. 47 (2001), 9–20. Zbl1054.37038MR1823005
  16. Lesfari A., A new class of integrable systems, Arch. Math. 77 (2001), 347–353. Zbl0996.70014MR1853551
  17. Lesfari A., The Hénon-Heiles system via the Kowalewski-Painlevé analysis, Int. J. Theor. Phys. Group Theory Nonlinear Opt. 9, N4 (2003), 305–330. MR2128205
  18. Lesfari A., Le théorème d’Arnold-Liouville et ses conséquences, Elem. Math. 58, Issue 1 (2003), 6–20. Zbl1112.37043MR1961831
  19. Lesfari A., Le système différentiel de Hénon-Heiles et les variétés Prym, Pacific J. Math. 212, No. 1 (2003), 125–132. MR2016973
  20. Mumford D., Tata lectures on theta II, Progr. Math., Birkhaüser, Boston, 1982. (1982) 
  21. Mumford D., On the equations defining Abelian varieties, Invent. Math. 1 (1966), 287–354. (1966) Zbl0219.14024MR0204427
  22. Perelomov A. M., Integrable systems of classical mechanics and Lie algebras, Birkhäuser, 1990. (1990) Zbl0717.70003MR1048350

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.