The complex geometry of an integrable system
Archivum Mathematicum (2003)
- Volume: 039, Issue: 4, page 257-270
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topLesfari, Ahmed. "The complex geometry of an integrable system." Archivum Mathematicum 039.4 (2003): 257-270. <http://eudml.org/doc/249126>.
@article{Lesfari2003,
abstract = {In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization $\left( 2,8\right) $ and that the flow of the system can be linearized on it.},
author = {Lesfari, Ahmed},
journal = {Archivum Mathematicum},
keywords = {integrable systems; curves; abelian varieties; abelian varieties; linearized flow; complex algebraic torus},
language = {eng},
number = {4},
pages = {257-270},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The complex geometry of an integrable system},
url = {http://eudml.org/doc/249126},
volume = {039},
year = {2003},
}
TY - JOUR
AU - Lesfari, Ahmed
TI - The complex geometry of an integrable system
JO - Archivum Mathematicum
PY - 2003
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 039
IS - 4
SP - 257
EP - 270
AB - In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization $\left( 2,8\right) $ and that the flow of the system can be linearized on it.
LA - eng
KW - integrable systems; curves; abelian varieties; abelian varieties; linearized flow; complex algebraic torus
UR - http://eudml.org/doc/249126
ER -
References
top- Adler M., van Moerbeke P., The algebraic complete integrability of geodesic flow on , Invent. Math. 67 (1982), 297–331. (1982) MR0665159
- Arbarello E., Cornalba M., Griffiths P. A., Harris J., Geometry of algebraic curves I, Springer-Verlag, 1994. (1994)
- Arnold V. I., Mathematical methods in classical mechanics, Springer-Verlag, Berlin-Heidelberg-New York, 1978. (1978) MR0690288
- Belokolos E. D., Bobenko A. I., Enolskii V. Z., Its A. R., Matveev V. B., Algebro-Geometric approach to nonlinear integrable equations, Springer-Verlag, 1994. (1994)
- Christiansen P. L., Eilbeck J. C., Enolskii V. Z., Kostov N. A., Quasi-periodic solutions of the coupled nonlinear Schrödinger equations, Proc. Roy. Soc. London Ser. A 451 (1995), 685–700. (1995) MR1369055
- Griffiths P. A., Harris J., Principles of algebraic geometry, Wiley-Interscience, 1978. (1978) Zbl0408.14001MR0507725
- Haine L., Geodesic flow on and Abelian surfaces, Math. Ann. 263 (1983), 435–472. (1983) Zbl0521.58042MR0707241
- Lesfari A., Une approche systématique à la résolution du corps solide de Kowalewski, C. R. Acad. Sc. Paris, série I, t. 302 (1986), 347–350. (1986) MR0837502
- Lesfari A., Abelian surfaces and Kowalewski’s top, Ann. Scient. École Norm. Sup. 4, 21 (1988), 193–223. (1988) Zbl0667.58019MR0956766
- Lesfari A., On affine surface that can be completed by a smooth curve, Results Math. 35 (1999), 107–118. (1999) Zbl0947.14022MR1678068
- Lesfari A., Une méthode de compactification de variétés liées aux systèmes dynamiques, Les cahiers de la recherche, Rectorat-Université Hassan II-Aïn Chock, Casablanca, Maroc, Vol. I, No. 1, (1999), 147–157. (1999)
- Lesfari A., Geodesic flow on , Kac-Moody Lie algebra and singularities in the complex t-plane, Publ. Mat. 43 (1999), 261–279. (1999) MR1697525
- Lesfari A., Completely integrable systems: Jacobi’s heritage, J. Geom. Phys. 31 (1999), 265–286. (1999) Zbl0937.37046MR1711527
- Lesfari A., The problem of the motion of a solid in an ideal fluid. Integration of the Clebsch’s case, Nonlinear Differential Equations Appl. 8 (2001), 1–13. Zbl0982.35085MR1828945
- Lesfari A., The generalized Hénon-Heiles system, Abelian surfaces and algebraic complete integrability, Rep. Math. Phys. 47 (2001), 9–20. Zbl1054.37038MR1823005
- Lesfari A., A new class of integrable systems, Arch. Math. 77 (2001), 347–353. Zbl0996.70014MR1853551
- Lesfari A., The Hénon-Heiles system via the Kowalewski-Painlevé analysis, Int. J. Theor. Phys. Group Theory Nonlinear Opt. 9, N4 (2003), 305–330. MR2128205
- Lesfari A., Le théorème d’Arnold-Liouville et ses conséquences, Elem. Math. 58, Issue 1 (2003), 6–20. Zbl1112.37043MR1961831
- Lesfari A., Le système différentiel de Hénon-Heiles et les variétés Prym, Pacific J. Math. 212, No. 1 (2003), 125–132. MR2016973
- Mumford D., Tata lectures on theta II, Progr. Math., Birkhaüser, Boston, 1982. (1982)
- Mumford D., On the equations defining Abelian varieties, Invent. Math. 1 (1966), 287–354. (1966) Zbl0219.14024MR0204427
- Perelomov A. M., Integrable systems of classical mechanics and Lie algebras, Birkhäuser, 1990. (1990) Zbl0717.70003MR1048350
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.