Abelian surfaces and Kowalewski's top

A. Lesfari

Annales scientifiques de l'École Normale Supérieure (1988)

  • Volume: 21, Issue: 2, page 193-223
  • ISSN: 0012-9593

How to cite

top

Lesfari, A.. "Abelian surfaces and Kowalewski's top." Annales scientifiques de l'École Normale Supérieure 21.2 (1988): 193-223. <http://eudml.org/doc/82225>.

@article{Lesfari1988,
author = {Lesfari, A.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Kowalewski top; invariant tori},
language = {eng},
number = {2},
pages = {193-223},
publisher = {Elsevier},
title = {Abelian surfaces and Kowalewski's top},
url = {http://eudml.org/doc/82225},
volume = {21},
year = {1988},
}

TY - JOUR
AU - Lesfari, A.
TI - Abelian surfaces and Kowalewski's top
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1988
PB - Elsevier
VL - 21
IS - 2
SP - 193
EP - 223
LA - eng
KW - Kowalewski top; invariant tori
UR - http://eudml.org/doc/82225
ER -

References

top
  1. [1] M. ADLER and P. VAN MOERBEKE, Completely Integrable Systems, Euclidean Lie Algebras and Curves (Adv. Math., Vol. 38, 1980, pp. 267-317). Zbl0455.58017MR83m:58041
  2. [2] M. ADLER and P. VAN MOERBEKE, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory (Adv. Math., Vol. 38, 1980, pp. 318-379). Zbl0455.58010MR83m:58042
  3. [3] M. ADLER and P. VAN MOERBEKE, Kowalewski's Asymptotic Method, Kac-Moody Lie Algebras and Regularization (Comm. Math. Phys., Vol. 83, 1982, pp. 83-106). Zbl0491.58017MR83c:58036
  4. [4] M. ADLER and P. VAN MOERBEKE, The Algebraic Integrability of Geodesic Flow on SO (4) (Invent. Math., Vol. 67, 1982, pp. 297-331 with an appendix by D. Mumford). Zbl0539.58012MR84g:58048
  5. [5] M. ADLER and P. VAN MOERBEKE, A Systematic Approach Towards Solving Integrable Systems (to appear). 
  6. [6] M. ADLER and P. VAN MOERBEKE, Intersection of Quadrics and Geodesic Flow on SO (4) (to appear). Zbl0545.58027
  7. [7] M. ADLER and P. VAN MOERBEKE, A Classification of Integrable Geodesic Flows on SO (4) (to appear). 
  8. [8] V. I. ARNOLD, Mathematical Methods of Classical Mechanics, Springer, Berlin, Heidelberg, New York, 1978. Zbl0386.70001MR57 #14033b
  9. [9] P. GRIFFITHS and J. HARRIS, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978. Zbl0408.14001MR80b:14001
  10. [10] L. HAINE, Geodesic Flow on SO (4) and Abelian Surfaces (Math. Ann., Vol. 263, 1983, pp. 435-472). Zbl0521.58042MR84k:14031
  11. [11] L. HAINE, The Algenraic Complete Integrability of Geodesic Flow on SO (n) (Comm. Math. Phys., Vol. 94, 1984, pp. 271-287). Zbl0584.58023MR86c:58065
  12. [12] G.-H. HALPHEN, Traité des fonctions elliptiques et de leurs applications, Gauthier-Villars, Paris, 1888. JFM20.0434.01
  13. [13] S. HILLE, Ordinary Differential Equations in the Complex Domain, Wiley-Interscience, New York, 1976. Zbl0343.34007
  14. [14] G. KOLOSSOFF, Ueber eine eigenschaft der differentialgleichungen der rotation eines schweren körpers um einen festen punkt im falle von frau S. Kowalewski (Math. Ann., Vol. 56, 1903, pp. 265-272). Zbl33.0762.01JFM33.0762.01
  15. [15] F. KÖTTER, Sur le cas traité par Kowalewski de rotation d'un corps solide pesant autour d'un point fixe (Acta Math., Vol. 17, 1892, pp. 209-263). JFM25.1432.01
  16. [16] S. KOWALEWSKI, Sur le problème de la rotation d'un corps solide autour d'un point fixe (Acta Math., Vol. 12, 1889, pp. 177-232). JFM21.0935.01
  17. [17] S. KOWALEWSKI, Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe (Acta Math., Vol. 14, 1890, pp. 81-93). JFM22.0921.02
  18. [18] A. LESFARI, Une approche systématique à la résolution du corps solide de Kowalewski (C. R. Acad. Sci. Paris, T. 302, série I, 1986, pp. 347-350). Zbl0606.34012MR87m:58072
  19. [19] A. LESFARI, Le corps solide de Kowalewski et les variétés Abéliennes (Thèse de doctorat en sciences, Université de Louvain, Louvain-la-Neuve, Belgique, décembre 1985). 
  20. [20] D. MUMFORD, Abelian Varieties, Oxford University press, Bombay-Oxford, 1974. 
  21. [21] P. VAN MOERBEKE, Algebraic Complete Integrability of Hamiltonian Systems and Kac-Moody Lie Algebras (Proc. Int. Congress of Math., Warszawa, August 1893. Zbl0566.58019
  22. [22] P. VAN MOERBEKE, The Royak Society Lecture on Algebraic Methods in Hamiltonian Mechanics (Proc. of the Royal Society, London, November 1, 1984). 
  23. [23] A. WEIL, Euler and the Jacobians of Elliptic Curves (Progress in Math., Vol. 36, pp. 353-359, Birkhöuser Boston, Inc., 1983). Zbl0554.01014MR85d:14060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.