On the H -property of some Banach sequence spaces

Suthep Suantai

Archivum Mathematicum (2003)

  • Volume: 039, Issue: 4, page 309-316
  • ISSN: 0044-8753

Abstract

top
In this paper we define a generalized Cesàro sequence space ces ( p ) and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space ces ( p ) posses property (H) and property (G), and it is rotund, where p = ( p k ) is a bounded sequence of positive real numbers with p k > 1 for all k N .

How to cite

top

Suantai, Suthep. "On the $H$-property of some Banach sequence spaces." Archivum Mathematicum 039.4 (2003): 309-316. <http://eudml.org/doc/249135>.

@article{Suantai2003,
abstract = {In this paper we define a generalized Cesàro sequence space $\operatorname\{ces\,\}(p)$ and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space $\operatorname\{ces\,\}(p)$ posses property (H) and property (G), and it is rotund, where $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$.},
author = {Suantai, Suthep},
journal = {Archivum Mathematicum},
keywords = {H-property; property (G); Cesàro sequence spaces; Luxemburg norm; property ; Cesàro sequence spaces; Luxemburg norm},
language = {eng},
number = {4},
pages = {309-316},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the $H$-property of some Banach sequence spaces},
url = {http://eudml.org/doc/249135},
volume = {039},
year = {2003},
}

TY - JOUR
AU - Suantai, Suthep
TI - On the $H$-property of some Banach sequence spaces
JO - Archivum Mathematicum
PY - 2003
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 039
IS - 4
SP - 309
EP - 316
AB - In this paper we define a generalized Cesàro sequence space $\operatorname{ces\,}(p)$ and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space $\operatorname{ces\,}(p)$ posses property (H) and property (G), and it is rotund, where $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$.
LA - eng
KW - H-property; property (G); Cesàro sequence spaces; Luxemburg norm; property ; Cesàro sequence spaces; Luxemburg norm
UR - http://eudml.org/doc/249135
ER -

References

top
  1. Geometry of Orlicz spaces, Dissertationes Math., 1996, pp. 356. (1996) MR1410390
  2. On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged ) 65 (1999), 179–187. (1999) MR1702144
  3. On some local geometry of Orlicz sequence spaces equipped the Luxemburg norms, Acta Math. Hungar. 80 (1-2) (1998), 143–154. (1998) MR1624558
  4. Banach-Saks property in some Banach sequence spaces, Annales Math. Polonici 65 (1997), 193–202. (1997) MR1432051
  5. Banach-Saks property and property ( β ) in Cesàro sequence spaces, SEA. Bull. Math. 24 (2000), 201–210. (2000) MR1810056
  6. Geometry of Banach Spaces - Selected Topics, Springer-Verlag, 1984. (1984) MR0461094
  7. Extreme and exposed points in Orlicz spaces, Canad. J. Math. 44 (1992), 505–515. (1992) MR1176367
  8. Orlicz spaces without strongly extreme points and without H-points, Canad. Math. Bull. 35 (1992), 1–5. (1992) MR1222531
  9. On some convexity properties of Orlicz sequence spaces, Math. Nachr. 186 (1997), 167–185. (1997) MR1461219
  10. Cesàro sequence spaces, Math. Chronicle, New Zealand 13 (1984), 29–45. (1984) Zbl0568.46006MR0769798
  11. Characterization of denting points, Proc. Amer. Math. Soc. 102 (1988), 526–528. (1988) MR0928972
  12. Method of sequence spaces, Guangdong of Science and Technology Press (1996 (in Chinese)). (1996 (in Chinese)) 
  13. Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, (1983). ((1983)) Zbl0557.46020MR0724434
  14. H-points and Denting Points in Orlicz Spaces, Comment. Math. Prace Mat. 33 (1993), 135–151. (1993) MR1269408
  15. On geometric properties of some Banach sequence spaces, Thesis for the degree of Master of Science in Mathematics, Chiang Mai University, 2000. (2000) 
  16. Cesàro sequence spaces, Tamkang J. Math. 1 (1970), 143–150. (1970) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.