Banach-Saks property in some Banach sequence spaces

Yunan Cui; Henryk Hudzik; Ryszard Płuciennik

Annales Polonici Mathematici (1997)

  • Volume: 65, Issue: 2, page 193-202
  • ISSN: 0066-2216

Abstract

top
It is proved that for any Banach space X property (β) defined by Rolewicz in [22] implies that both X and X* have the Banach-Saks property. Moreover, in Musielak-Orlicz sequence spaces, criteria for the Banach-Saks property, the near uniform convexity, the uniform Kadec-Klee property and property (H) are given.

How to cite

top

Yunan Cui, Henryk Hudzik, and Ryszard Płuciennik. "Banach-Saks property in some Banach sequence spaces." Annales Polonici Mathematici 65.2 (1997): 193-202. <http://eudml.org/doc/269983>.

@article{YunanCui1997,
abstract = {It is proved that for any Banach space X property (β) defined by Rolewicz in [22] implies that both X and X* have the Banach-Saks property. Moreover, in Musielak-Orlicz sequence spaces, criteria for the Banach-Saks property, the near uniform convexity, the uniform Kadec-Klee property and property (H) are given.},
author = {Yunan Cui, Henryk Hudzik, Ryszard Płuciennik},
journal = {Annales Polonici Mathematici},
keywords = {Banach-Saks property; property (β); nearly uniform convexity; uniform Kadec-Klee property; property (H); Musielak-Orlicz sequence space; property ; Musielak-Orlicz sequence spaces; near uniform convexity; property },
language = {eng},
number = {2},
pages = {193-202},
title = {Banach-Saks property in some Banach sequence spaces},
url = {http://eudml.org/doc/269983},
volume = {65},
year = {1997},
}

TY - JOUR
AU - Yunan Cui
AU - Henryk Hudzik
AU - Ryszard Płuciennik
TI - Banach-Saks property in some Banach sequence spaces
JO - Annales Polonici Mathematici
PY - 1997
VL - 65
IS - 2
SP - 193
EP - 202
AB - It is proved that for any Banach space X property (β) defined by Rolewicz in [22] implies that both X and X* have the Banach-Saks property. Moreover, in Musielak-Orlicz sequence spaces, criteria for the Banach-Saks property, the near uniform convexity, the uniform Kadec-Klee property and property (H) are given.
LA - eng
KW - Banach-Saks property; property (β); nearly uniform convexity; uniform Kadec-Klee property; property (H); Musielak-Orlicz sequence space; property ; Musielak-Orlicz sequence spaces; near uniform convexity; property
UR - http://eudml.org/doc/269983
ER -

References

top
  1. [1] S. Banach and S. Saks, Sur la convergence forte dans les champs L p , Studia Math. 2 (1930), 51-57. Zbl56.0932.01
  2. [2] C J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414. Zbl0015.35604
  3. [3] S. Chen, Geometry of Orlicz spaces, Dissertationes Math. 356 (1996). 
  4. [4] Y. A. Cui and H. Hudzik, Maluta coefficient and Opial property in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, Nonlinear Anal., to appear. 
  5. [5] J. Daneš, A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. (4) 6 (1972), 369-375. Zbl0236.47053
  6. [6] M. Denker and H. Hudzik, Uniformly non- l n ( 1 ) Musielak-Orlicz sequence spaces, Proc. Indian Acad. Sci. 101 (2) (1991), 71-86. Zbl0789.46008
  7. [7] D J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984. 
  8. [8] K. Goebel and T. Sękowski, The modulus of non-compact convexity, Ann. Univ. Mariae Curie-Skłodowska Sect. A 38 (1984), 41-48. Zbl0607.46011
  9. [9] H. Hudzik and Y. Ye, Support functionals and smoothness in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, Comment. Math. Univ. Carolin. 31 (1990), 661-684. Zbl0721.46012
  10. [10] H R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 473-749. Zbl0505.46011
  11. [11] K M. I. Kadec [M. I. Kadets], The connection between several convexity properties of the unit sphere of a Banach space, Funktsional. Anal. i Prilozhen. 16 (3) (1982), 58-60 (in Russian); English transl.: Functional Anal. Appl. 16 (3) (1982), 204-206. 
  12. [12] S. Kakutani, Weak convergence in uniformly convex Banach spaces, Tôhoku Math. J. 45 (1938), 188-193. Zbl64.0369.01
  13. [13] A. Kamińska, Flat Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1992), 347-352. Zbl0513.46008
  14. [14] A. Kamińska, Uniform rotundity of Musielak-Orlicz sequence spaces, J. Approx. Theory 47 (1986), 302-322. Zbl0606.46003
  15. [15] D. N. Kutzarova, An isomorphic characterization of property (β) of Rolewicz, Note Mat. 10 (1990), 347-354. Zbl0789.46009
  16. [16] D. N. Kutzarova, E. Maluta and S. Prus, Property (β) implies normal structure of the dual space, Rend. Circ. Mat. Palermo 41 (1992), 335-368. Zbl0785.46013
  17. [17] L W. A. J. Luxemburg, Banach function spaces, thesis, Delft, 1955. Zbl0068.09204
  18. [18] M V. Montesinos, Drop property equals reflexivity, Studia Math. 87 (1987), 93-100. Zbl0652.46009
  19. [19] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983. Zbl0557.46020
  20. [20] P S. Prus, Nearly uniformly smooth Banach spaces, Boll. Un. Mat. Ital. B (7) 3 (1989), 506-521. 
  21. [21] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991. Zbl0724.46032
  22. [22] R S. Rolewicz, On Δ-uniform convexity and drop property, Studia Math. 87 (1987), 181-191. Zbl0652.46010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.