On the uniqueness of loops
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 4, page 629-635
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topVojtěchovský, Petr. "On the uniqueness of loops $M(G,2)$." Commentationes Mathematicae Universitatis Carolinae 44.4 (2003): 629-635. <http://eudml.org/doc/249159>.
@article{Vojtěchovský2003,
abstract = {Let $G$ be a finite group and $C_2$ the cyclic group of order 2. Consider the 8 multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i,j,k\in \lbrace -1,\,1\rbrace $. Define a new multiplication on $G\times C_2$ by assigning one of the above 8 multiplications to each quarter $(G\times \lbrace i\rbrace )\times (G\times \lbrace j\rbrace )$, for $i,j\in C_2$. If the resulting quasigroup is a Bol loop, it is Moufang. When $G$ is nonabelian then exactly four assignments yield Moufang loops that are not associative; all (anti)isomorphic, known as loops $M(G,2)$.},
author = {Vojtěchovský, Petr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Moufang loops; loops $M(G, 2)$; inverse property loops; Bol loops; Moufang loops; loops ; inverse property loops; Bol loops; multiplication tables},
language = {eng},
number = {4},
pages = {629-635},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the uniqueness of loops $M(G,2)$},
url = {http://eudml.org/doc/249159},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Vojtěchovský, Petr
TI - On the uniqueness of loops $M(G,2)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 4
SP - 629
EP - 635
AB - Let $G$ be a finite group and $C_2$ the cyclic group of order 2. Consider the 8 multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i,j,k\in \lbrace -1,\,1\rbrace $. Define a new multiplication on $G\times C_2$ by assigning one of the above 8 multiplications to each quarter $(G\times \lbrace i\rbrace )\times (G\times \lbrace j\rbrace )$, for $i,j\in C_2$. If the resulting quasigroup is a Bol loop, it is Moufang. When $G$ is nonabelian then exactly four assignments yield Moufang loops that are not associative; all (anti)isomorphic, known as loops $M(G,2)$.
LA - eng
KW - Moufang loops; loops $M(G, 2)$; inverse property loops; Bol loops; Moufang loops; loops ; inverse property loops; Bol loops; multiplication tables
UR - http://eudml.org/doc/249159
ER -
References
top- Chein O., Moufang loops of small order, Memoirs of the American Mathematical Society, Volume 13, Issue 1, Number 197 (1978). Zbl0378.20053MR0466391
- Chein O., Pflugfelder H.O., Smith J.D.H., Quasigroups and Loops: Theory and Applications, Sigma Series in Pure Mathematics 8, Heldermann Verlag, Berlin, 1990. Zbl0719.20036MR1125806
- Chein O., Pflugfelder H.O., The smallest Moufang loop, Arch. Math. 22 (1971), 573-576. (1971) Zbl0241.20061MR0297914
- Drápal A., Vojtěchovský P., Moufang loops that share associator and three quarters of their multiplication tables, submitted.
- Goodaire E.G., May S., Raman M., The Moufang Loops of Order less than , Nova Science Publishers, 1999. Zbl0964.20043MR1689624
- Pflugfelder H.O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics 7, Heldermann Verlag, Berlin, 1990. Zbl0715.20043MR1125767
- Vojtěchovský P., The smallest Moufang loop revisited, to appear in Results Math. MR2011917
- Vojtěchovský P., Connections between codes, groups and loops, Ph.D. Thesis, Charles Univesity, 2003.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.