A class of Bol loops with a subgroup of index two
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 2, page 371-381
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topVojtěchovský, Petr. "A class of Bol loops with a subgroup of index two." Commentationes Mathematicae Universitatis Carolinae 45.2 (2004): 371-381. <http://eudml.org/doc/249381>.
@article{Vojtěchovský2004,
abstract = {Let $G$ be a finite group and $C_2$ the cyclic group of order $2$. Consider the $8$ multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i$, $j$, $k\in \lbrace -1,\,1\rbrace $. Define a new multiplication on $G\times C_2$ by assigning one of the above $8$ multiplications to each quarter $(G\times \lbrace i\rbrace )\times (G\times \lbrace j\rbrace )$, for $i, j\in C_2$. We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojtěchovsk’y: On the uniqueness of loops $M(G,2)$.},
author = {Vojtěchovský, Petr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Moufang loops; loops $M(G, 2)$; inverse property loops; Bol loops; Bol loops; subloops of index two},
language = {eng},
number = {2},
pages = {371-381},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A class of Bol loops with a subgroup of index two},
url = {http://eudml.org/doc/249381},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Vojtěchovský, Petr
TI - A class of Bol loops with a subgroup of index two
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 2
SP - 371
EP - 381
AB - Let $G$ be a finite group and $C_2$ the cyclic group of order $2$. Consider the $8$ multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i$, $j$, $k\in \lbrace -1,\,1\rbrace $. Define a new multiplication on $G\times C_2$ by assigning one of the above $8$ multiplications to each quarter $(G\times \lbrace i\rbrace )\times (G\times \lbrace j\rbrace )$, for $i, j\in C_2$. We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojtěchovsk’y: On the uniqueness of loops $M(G,2)$.
LA - eng
KW - Moufang loops; loops $M(G, 2)$; inverse property loops; Bol loops; Bol loops; subloops of index two
UR - http://eudml.org/doc/249381
ER -
References
top- Burn R.P., Finite Bol loops, Math. Proc. Cambridge Philos. Soc. 84 (1978), 3 377-385. (1978) Zbl0385.20043MR0492030
- Chein O., Moufang loops of small order, Memoirs of the American Mathematical Society, Volume 13, Issue 1, Number 197 (1978). Zbl0378.20053MR0466391
- Chein O., Pflugfelder H.O., The smallest Moufang loop, Arch. Math. 22 (1971), 573-576. (1971) Zbl0241.20061MR0297914
- Drápal A., How far apart can the group multiplication tables be?, European Journal of Combinatorics 13 (1992), 335-343. (1992) MR1181074
- Drápal A., Non-isomorphic -groups coincide at most in three quarters of their multiplication tables, European Journal of Combinatorics 21 (2000), 301-321. (2000) MR1750166
- Drápal A., Vojtěchovský P., Moufang loops that share associator and three quarters of their multiplication tables, submitted.
- Goodaire E.G., May S., Raman M., The Moufang Loops of Order less than , Nova Science Publishers, 1999. Zbl0964.20043MR1689624
- Nagy G.P., Vojtěchovský P., LOOPS, a package for GAP 4.3. Download GAP at http://www-gap.dcs.st-and.ac.uk/ gap. Download a beta version of LOOPS at http://www.math.du.edu/loops/loops.html.
- Pflugfelder H.O., Quasigroups and Loops: Introduction, Sigma series in pure mathematics 7, Heldermann Verlag, Berlin, 1990. Zbl0715.20043MR1125767
- Rotman J.J., The Theory of Groups: An Introduction, Allyn and Bacon, Inc., 1965. Zbl0262.20001MR0204499
- Vojtěchovský P., On the uniqueness of loops , Comment. Math. Univ. Carolinae 44 (2003), 4 629-365. (2003) Zbl1101.20047MR2062879
- Vojtěchovský P., The smallest Moufang loop revisited, Results in Mathematics 44 (2003), 189-193. (2003) Zbl1050.20046MR2011917
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.