A class of Bol loops with a subgroup of index two

Petr Vojtěchovský

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 2, page 371-381
  • ISSN: 0010-2628

Abstract

top
Let G be a finite group and C 2 the cyclic group of order 2 . Consider the 8 multiplicative operations ( x , y ) ( x i y j ) k , where i , j , k { - 1 , 1 } . Define a new multiplication on G × C 2 by assigning one of the above 8 multiplications to each quarter ( G × { i } ) × ( G × { j } ) , for i , j C 2 . We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojtěchovsk’y: On the uniqueness of loops M ( G , 2 ) .

How to cite

top

Vojtěchovský, Petr. "A class of Bol loops with a subgroup of index two." Commentationes Mathematicae Universitatis Carolinae 45.2 (2004): 371-381. <http://eudml.org/doc/249381>.

@article{Vojtěchovský2004,
abstract = {Let $G$ be a finite group and $C_2$ the cyclic group of order $2$. Consider the $8$ multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i$, $j$, $k\in \lbrace -1,\,1\rbrace $. Define a new multiplication on $G\times C_2$ by assigning one of the above $8$ multiplications to each quarter $(G\times \lbrace i\rbrace )\times (G\times \lbrace j\rbrace )$, for $i, j\in C_2$. We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojtěchovsk’y: On the uniqueness of loops $M(G,2)$.},
author = {Vojtěchovský, Petr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Moufang loops; loops $M(G, 2)$; inverse property loops; Bol loops; Bol loops; subloops of index two},
language = {eng},
number = {2},
pages = {371-381},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A class of Bol loops with a subgroup of index two},
url = {http://eudml.org/doc/249381},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Vojtěchovský, Petr
TI - A class of Bol loops with a subgroup of index two
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 2
SP - 371
EP - 381
AB - Let $G$ be a finite group and $C_2$ the cyclic group of order $2$. Consider the $8$ multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i$, $j$, $k\in \lbrace -1,\,1\rbrace $. Define a new multiplication on $G\times C_2$ by assigning one of the above $8$ multiplications to each quarter $(G\times \lbrace i\rbrace )\times (G\times \lbrace j\rbrace )$, for $i, j\in C_2$. We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojtěchovsk’y: On the uniqueness of loops $M(G,2)$.
LA - eng
KW - Moufang loops; loops $M(G, 2)$; inverse property loops; Bol loops; Bol loops; subloops of index two
UR - http://eudml.org/doc/249381
ER -

References

top
  1. Burn R.P., Finite Bol loops, Math. Proc. Cambridge Philos. Soc. 84 (1978), 3 377-385. (1978) Zbl0385.20043MR0492030
  2. Chein O., Moufang loops of small order, Memoirs of the American Mathematical Society, Volume 13, Issue 1, Number 197 (1978). Zbl0378.20053MR0466391
  3. Chein O., Pflugfelder H.O., The smallest Moufang loop, Arch. Math. 22 (1971), 573-576. (1971) Zbl0241.20061MR0297914
  4. Drápal A., How far apart can the group multiplication tables be?, European Journal of Combinatorics 13 (1992), 335-343. (1992) MR1181074
  5. Drápal A., Non-isomorphic 2 -groups coincide at most in three quarters of their multiplication tables, European Journal of Combinatorics 21 (2000), 301-321. (2000) MR1750166
  6. Drápal A., Vojtěchovský P., Moufang loops that share associator and three quarters of their multiplication tables, submitted. 
  7. Goodaire E.G., May S., Raman M., The Moufang Loops of Order less than 64 , Nova Science Publishers, 1999. Zbl0964.20043MR1689624
  8. Nagy G.P., Vojtěchovský P., LOOPS, a package for GAP 4.3. Download GAP at http://www-gap.dcs.st-and.ac.uk/ gap. Download a beta version of LOOPS at http://www.math.du.edu/loops/loops.html. 
  9. Pflugfelder H.O., Quasigroups and Loops: Introduction, Sigma series in pure mathematics 7, Heldermann Verlag, Berlin, 1990. Zbl0715.20043MR1125767
  10. Rotman J.J., The Theory of Groups: An Introduction, Allyn and Bacon, Inc., 1965. Zbl0262.20001MR0204499
  11. Vojtěchovský P., On the uniqueness of loops M ( G , 2 ) , Comment. Math. Univ. Carolinae 44 (2003), 4 629-365. (2003) Zbl1101.20047MR2062879
  12. Vojtěchovský P., The smallest Moufang loop revisited, Results in Mathematics 44 (2003), 189-193. (2003) Zbl1050.20046MR2011917

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.