Inert subgroups of uncountable locally finite groups

Barbara Majcher-Iwanow

Commentationes Mathematicae Universitatis Carolinae (2003)

  • Volume: 44, Issue: 4, page 615-622
  • ISSN: 0010-2628

Abstract

top
Let G be an uncountable universal locally finite group. We study subgroups H < G such that for every g G , | H : H H g | < | H | .

How to cite

top

Majcher-Iwanow, Barbara. "Inert subgroups of uncountable locally finite groups." Commentationes Mathematicae Universitatis Carolinae 44.4 (2003): 615-622. <http://eudml.org/doc/249165>.

@article{Majcher2003,
abstract = {Let $G$ be an uncountable universal locally finite group. We study subgroups $H<G$ such that for every $g\in G$, $|H:H\cap H^g|<|H|$.},
author = {Majcher-Iwanow, Barbara},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {universal locally finite group; inert subgroup; universal locally finite groups; inert subgroups; residually finite subgroups},
language = {eng},
number = {4},
pages = {615-622},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Inert subgroups of uncountable locally finite groups},
url = {http://eudml.org/doc/249165},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Majcher-Iwanow, Barbara
TI - Inert subgroups of uncountable locally finite groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 4
SP - 615
EP - 622
AB - Let $G$ be an uncountable universal locally finite group. We study subgroups $H<G$ such that for every $g\in G$, $|H:H\cap H^g|<|H|$.
LA - eng
KW - universal locally finite group; inert subgroup; universal locally finite groups; inert subgroups; residually finite subgroups
UR - http://eudml.org/doc/249165
ER -

References

top
  1. Belyaev V., Locally finite groups with a finite non-separated subgroups, Siberian Math. J. 34 (1993), 2 23-39. (1993) MR1223752
  2. Hall Ph., Some constructions for locally finite groups, J. London Math. Soc. 34 (1959), 305-319. (1959) Zbl0088.02301MR0162845
  3. Hickin K., Universal locally finite central extensions of groups, Proc. London Math. Soc. 52 (1986), 53-72. (1986) Zbl0582.20022MR0812445
  4. Kegel O., Wehrfritz B., Locally Finite Groups, North-Holland, Amsterdam, 1973. Zbl0259.20001MR0470081
  5. Keisler H.J., Model Theory for Infinitary Logic, North-Holland, Amsterdam, 1971. Zbl0222.02064
  6. Macintyre A., Shelah S., Uncountable universal locally finite groups, J. Algebra 43 (1976), 168-175. (1976) Zbl0363.20032MR0439625
  7. Mekler A., On residual properties, Proc. Amer. Math. Soc. 78 (1980), 187-188. (1980) Zbl0448.03021MR0550490
  8. Morley M., Homogeneous sets, in: Handbook of Mathematical Logic, edited by J. Barwise, North-Holland, Amsterdam, 1977, pp.181-196. MR0457132

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.