Commutative group algebras of highly torsion-complete abelian p -groups

Peter Vassilev Danchev

Commentationes Mathematicae Universitatis Carolinae (2003)

  • Volume: 44, Issue: 4, page 587-592
  • ISSN: 0010-2628

Abstract

top
A new class of abelian p -groups with all high subgroups isomorphic is defined. Commutative modular and semisimple group algebras over such groups are examined. The results obtained continue our recent statements published in Comment. Math. Univ. Carolinae (2002).

How to cite

top

Danchev, Peter Vassilev. "Commutative group algebras of highly torsion-complete abelian $p$-groups." Commentationes Mathematicae Universitatis Carolinae 44.4 (2003): 587-592. <http://eudml.org/doc/249171>.

@article{Danchev2003,
abstract = {A new class of abelian $p$-groups with all high subgroups isomorphic is defined. Commutative modular and semisimple group algebras over such groups are examined. The results obtained continue our recent statements published in Comment. Math. Univ. Carolinae (2002).},
author = {Danchev, Peter Vassilev},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {high subgroups; torsion-complete groups; group algebras; direct factors; high subgroups; torsion-complete groups; modular group algebras; direct factors; isomorphism problem; Abelian -groups; algebraically compact groups; semisimple group algebras},
language = {eng},
number = {4},
pages = {587-592},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Commutative group algebras of highly torsion-complete abelian $p$-groups},
url = {http://eudml.org/doc/249171},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Danchev, Peter Vassilev
TI - Commutative group algebras of highly torsion-complete abelian $p$-groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 4
SP - 587
EP - 592
AB - A new class of abelian $p$-groups with all high subgroups isomorphic is defined. Commutative modular and semisimple group algebras over such groups are examined. The results obtained continue our recent statements published in Comment. Math. Univ. Carolinae (2002).
LA - eng
KW - high subgroups; torsion-complete groups; group algebras; direct factors; high subgroups; torsion-complete groups; modular group algebras; direct factors; isomorphism problem; Abelian -groups; algebraically compact groups; semisimple group algebras
UR - http://eudml.org/doc/249171
ER -

References

top
  1. Culter D.O., Primary abelian groups having all high subgroups isomorphic, Proc. Amer. Math. Soc. (3) 83 (1981), 467-470. (1981) MR0627671
  2. Culter D.O., High subgroups of primary abelian groups of length ø m e g a + n , J. Algebra 83 (1983), 502-509. (1983) MR0714261
  3. Danchev P.V., Normed unit groups and direct factor problem for commutative modular group algebras, Math. Balkanica (2-3) 10 (1996), 161-173. (1996) Zbl0980.16500MR1606535
  4. Danchev P.V., Isomorphism of commutative semisimple group algebras, Math. Balkanica (1-2) 11 (1997), 51-55. (1997) Zbl0939.16015MR1606596
  5. Danchev P.V., Isomorphism of modular group algebras of direct sums of torsion-complete abelian p -groups, Rend. Sem. Mat. Univ. Padova 101 (1999), 51-58. (1999) Zbl0959.20003MR1705279
  6. Danchev P.V., Commutative group algebras of cardinality 1 , Southeast Asian Bull. Math. (4) 25 (2001), 589-598. (2001) MR1934659
  7. Danchev P.V., Commutative modular group algebras of p -mixed and p -splitting abelian Σ -groups, Comment. Math. Univ. Carolinae 43 (2002), 419-428. (2002) Zbl1068.16042MR1920518
  8. Danchev P.V., Invariants for group algebras of abelian groups, Rend. Circolo Mat. Palermo (2) 51 (2002), 391-402. (2002) Zbl1097.20504MR1947462
  9. Danchev P.V., Isomorphism of commutative group algebras of closed p -groups and p -local algebraically compact groups, Proc. Amer. Math. Soc. 130 (2002), 1937-1941. (2002) Zbl0997.20007MR1896025
  10. Danchev P.V., Sylow p -subgroups of abelian group rings, Serdica Math. J. 29 (2003), 33-44. (2003) Zbl1035.16025MR1981103
  11. Danchev P.V., Isomorphic commutative group algebras of primary semi-complete abelian groups, to appear. 
  12. Danchev P.V., Torsion completeness of Sylow p -groups in semi-simple group rings, Acta Math. Sinica (2003). (2003) 
  13. Danchev P.V., Commutative group algebras of p ø m e g a + n -projective abelian groups, submitted. Zbl1111.20007
  14. Danchev P.V., S ( R G ) / G p is a Σ -group, in press. 
  15. Fuchs L., Infinite Abelian Groups, I and II, Mir, Moscow, 1974 and 1977 (in Russian). Zbl0338.20063MR0457533
  16. Hill P.D., The equivalence of high subgroups, Proc. Amer. Math. Soc. 88 (1983), 207-211. (1983) Zbl0522.20038MR0695242
  17. Irwin J.M., High subgroups of abelian torsion groups, Pacific J. Math. 11 (1961), 1375-1384. (1961) Zbl0106.02303MR0136654
  18. Irwin J.M., Cellars R.M., Snabb T., A functorial generalization of Ulm's theorem, Comment. Math. Univ. St. Pauli 27 (1978), 155-177. (1978) MR0546205
  19. Irwin J.M., Richman F., Walker E.A., Countable direct sums of torsion complete groups, Proc. Amer. Math. Soc. 17 (1966), 763-766. (1966) Zbl0143.04501MR0197556
  20. Irwin J.M., Snabb T., Cellars R.M., The torsion product of totally projective p -groups, Comment. Math. Univ. St. Pauli 29 (1980), 1-5. (1980) Zbl0441.20035MR0586242
  21. Mollov T.Zh., Sylow p -subgroups of the group of normed units of semisimple group algebras of uncountable abelian p -groups, Pliska Stud. Math. Bulgar. 8 (1986), 34-46 (in Russian). (1986) MR0866643

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.