Perfect sets and collapsing continuum

Miroslav Repický

Commentationes Mathematicae Universitatis Carolinae (2003)

  • Volume: 44, Issue: 2, page 315-327
  • ISSN: 0010-2628

Abstract

top
Under Martin’s axiom, collapsing of the continuum by Sacks forcing 𝕊 is characterized by the additivity of Marczewski’s ideal (see [4]). We show that the same characterization holds true if 𝔡 = 𝔠 proving that under this hypothesis there are no small uncountable maximal antichains in 𝕊 . We also construct a partition of ω 2 into 𝔠 perfect sets which is a maximal antichain in 𝕊 and show that s 0 -sets are exactly (subsets of) selectors of maximal antichains of perfect sets.

How to cite

top

Repický, Miroslav. "Perfect sets and collapsing continuum." Commentationes Mathematicae Universitatis Carolinae 44.2 (2003): 315-327. <http://eudml.org/doc/249179>.

@article{Repický2003,
abstract = {Under Martin’s axiom, collapsing of the continuum by Sacks forcing $\mathbb \{S\}$ is characterized by the additivity of Marczewski’s ideal (see [4]). We show that the same characterization holds true if $\mathfrak \{d\}=\mathfrak \{c\}$ proving that under this hypothesis there are no small uncountable maximal antichains in $\mathbb \{S\}$. We also construct a partition of $^\omega 2$ into $\mathfrak \{c\}$ perfect sets which is a maximal antichain in $\mathbb \{S\}$ and show that $s^0$-sets are exactly (subsets of) selectors of maximal antichains of perfect sets.},
author = {Repický, Miroslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Sacks forcing; Marczewski's ideal; cardinal invariants; Sacks forcing; Marczewski's ideal; cardinal invariants},
language = {eng},
number = {2},
pages = {315-327},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Perfect sets and collapsing continuum},
url = {http://eudml.org/doc/249179},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Repický, Miroslav
TI - Perfect sets and collapsing continuum
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 2
SP - 315
EP - 327
AB - Under Martin’s axiom, collapsing of the continuum by Sacks forcing $\mathbb {S}$ is characterized by the additivity of Marczewski’s ideal (see [4]). We show that the same characterization holds true if $\mathfrak {d}=\mathfrak {c}$ proving that under this hypothesis there are no small uncountable maximal antichains in $\mathbb {S}$. We also construct a partition of $^\omega 2$ into $\mathfrak {c}$ perfect sets which is a maximal antichain in $\mathbb {S}$ and show that $s^0$-sets are exactly (subsets of) selectors of maximal antichains of perfect sets.
LA - eng
KW - Sacks forcing; Marczewski's ideal; cardinal invariants; Sacks forcing; Marczewski's ideal; cardinal invariants
UR - http://eudml.org/doc/249179
ER -

References

top
  1. Balcar B., Vojtáš P., Refining systems on Boolean algebras, in: Set Theory and Hierarchy Theory, V (Proc. Third Conf., Bierutowice, 1976), Lecture Notes in Math. 619, Springer, Berlin, 1977, pp.45-58; MR 58 #16445. MR0498304
  2. Balcar B., Simon P., Disjoint refinement, in: Handbook of Boolean Algebras, Vol. 2 (J.D. Monk and R. Bonnet, Eds.), North-Holland, Amsterdam, 1989, pp.333-388. MR0991597
  3. Hausdorff F., 10.4064/fm-26-1-241-255, Fund. Math. 26 (1936), 241-255; Zbl. 014.05402. (1936) Zbl0014.05402DOI10.4064/fm-26-1-241-255
  4. Judah H., Miller A.W., Shelah S., 10.1007/BF01269943, Arch. Math. Logic 31 (1992), 3 145-161; MR 93e:03074. (1992) Zbl0755.03026MR1147737DOI10.1007/BF01269943
  5. Kechris A.S., Classical Descriptive Set Theory, Graduate Texts in Mathematics 156, Springer-Verlag, New York, 1995; MR 96e:03057. Zbl0819.04002MR1321597
  6. Koppelberg S., Handbook of Boolean Algebras, Vol. 1 (J.D. Monk and R. Bonnet, Eds.), North-Holland, Amsterdam, 1989; MR 90k:06003. Zbl0671.06001MR0991565
  7. Marczewski (Szpilrajn) E., 10.4064/fm-24-1-17-34, Fund. Math. 24 (1935), 17-34; Zbl. 0010.19901. (1935) DOI10.4064/fm-24-1-17-34
  8. Miller A.W., 10.1016/S0049-237X(08)71271-0, The Kleene Symposium (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1978), Stud. Logic Foundations Math. 101 (J. Barwise, H.J. Keisler, and K. Kunen, Eds.), North-Holland, Amsterdam, 1980, pp.415-421; MR 82k:03083. MR0591893DOI10.1016/S0049-237X(08)71271-0
  9. Newelski L., 10.2307/2274384, J. Symbolic Logic 52 (1997), 2 353-359; MR 88k:03107. (1997) MR0890442DOI10.2307/2274384
  10. Rosłanowski A., Shelah S., More forcing notions imply diamond, Arch. Math. Logic 35 (1996), 5-6 299-313; MR 97j:03098. (1996) MR1420260
  11. Simon P., Sacks forcing collapses 𝔠 to 𝔟 , Comment. Math. Univ. Carolinae 34 (1993), 4 707-710; MR 94m:03084. (1993) MR1263799
  12. Vaughan J.E., Small uncountable cardinals and topology, in: Open Problems of Topology (J. van Mill and G.M. Reed, Eds.), North-Holland, Amsterdam, 1990, pp.195-218. MR1078647

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.