Perfect sets and collapsing continuum
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 2, page 315-327
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topRepický, Miroslav. "Perfect sets and collapsing continuum." Commentationes Mathematicae Universitatis Carolinae 44.2 (2003): 315-327. <http://eudml.org/doc/249179>.
@article{Repický2003,
abstract = {Under Martin’s axiom, collapsing of the continuum by Sacks forcing $\mathbb \{S\}$ is characterized by the additivity of Marczewski’s ideal (see [4]). We show that the same characterization holds true if $\mathfrak \{d\}=\mathfrak \{c\}$ proving that under this hypothesis there are no small uncountable maximal antichains in $\mathbb \{S\}$. We also construct a partition of $^\omega 2$ into $\mathfrak \{c\}$ perfect sets which is a maximal antichain in $\mathbb \{S\}$ and show that $s^0$-sets are exactly (subsets of) selectors of maximal antichains of perfect sets.},
author = {Repický, Miroslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Sacks forcing; Marczewski's ideal; cardinal invariants; Sacks forcing; Marczewski's ideal; cardinal invariants},
language = {eng},
number = {2},
pages = {315-327},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Perfect sets and collapsing continuum},
url = {http://eudml.org/doc/249179},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Repický, Miroslav
TI - Perfect sets and collapsing continuum
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 2
SP - 315
EP - 327
AB - Under Martin’s axiom, collapsing of the continuum by Sacks forcing $\mathbb {S}$ is characterized by the additivity of Marczewski’s ideal (see [4]). We show that the same characterization holds true if $\mathfrak {d}=\mathfrak {c}$ proving that under this hypothesis there are no small uncountable maximal antichains in $\mathbb {S}$. We also construct a partition of $^\omega 2$ into $\mathfrak {c}$ perfect sets which is a maximal antichain in $\mathbb {S}$ and show that $s^0$-sets are exactly (subsets of) selectors of maximal antichains of perfect sets.
LA - eng
KW - Sacks forcing; Marczewski's ideal; cardinal invariants; Sacks forcing; Marczewski's ideal; cardinal invariants
UR - http://eudml.org/doc/249179
ER -
References
top- Balcar B., Vojtáš P., Refining systems on Boolean algebras, in: Set Theory and Hierarchy Theory, V (Proc. Third Conf., Bierutowice, 1976), Lecture Notes in Math. 619, Springer, Berlin, 1977, pp.45-58; MR 58 #16445. MR0498304
- Balcar B., Simon P., Disjoint refinement, in: Handbook of Boolean Algebras, Vol. 2 (J.D. Monk and R. Bonnet, Eds.), North-Holland, Amsterdam, 1989, pp.333-388. MR0991597
- Hausdorff F., 10.4064/fm-26-1-241-255, Fund. Math. 26 (1936), 241-255; Zbl. 014.05402. (1936) Zbl0014.05402DOI10.4064/fm-26-1-241-255
- Judah H., Miller A.W., Shelah S., 10.1007/BF01269943, Arch. Math. Logic 31 (1992), 3 145-161; MR 93e:03074. (1992) Zbl0755.03026MR1147737DOI10.1007/BF01269943
- Kechris A.S., Classical Descriptive Set Theory, Graduate Texts in Mathematics 156, Springer-Verlag, New York, 1995; MR 96e:03057. Zbl0819.04002MR1321597
- Koppelberg S., Handbook of Boolean Algebras, Vol. 1 (J.D. Monk and R. Bonnet, Eds.), North-Holland, Amsterdam, 1989; MR 90k:06003. Zbl0671.06001MR0991565
- Marczewski (Szpilrajn) E., 10.4064/fm-24-1-17-34, Fund. Math. 24 (1935), 17-34; Zbl. 0010.19901. (1935) DOI10.4064/fm-24-1-17-34
- Miller A.W., 10.1016/S0049-237X(08)71271-0, The Kleene Symposium (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1978), Stud. Logic Foundations Math. 101 (J. Barwise, H.J. Keisler, and K. Kunen, Eds.), North-Holland, Amsterdam, 1980, pp.415-421; MR 82k:03083. MR0591893DOI10.1016/S0049-237X(08)71271-0
- Newelski L., 10.2307/2274384, J. Symbolic Logic 52 (1997), 2 353-359; MR 88k:03107. (1997) MR0890442DOI10.2307/2274384
- Rosłanowski A., Shelah S., More forcing notions imply diamond, Arch. Math. Logic 35 (1996), 5-6 299-313; MR 97j:03098. (1996) MR1420260
- Simon P., Sacks forcing collapses to , Comment. Math. Univ. Carolinae 34 (1993), 4 707-710; MR 94m:03084. (1993) MR1263799
- Vaughan J.E., Small uncountable cardinals and topology, in: Open Problems of Topology (J. van Mill and G.M. Reed, Eds.), North-Holland, Amsterdam, 1990, pp.195-218. MR1078647
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.