Non-existence of some canonical constructions on connections
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 4, page 691-695
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMikulski, Włodzimierz M.. "Non-existence of some canonical constructions on connections." Commentationes Mathematicae Universitatis Carolinae 44.4 (2003): 691-695. <http://eudml.org/doc/249186>.
@article{Mikulski2003,
abstract = {For a vector bundle functor $H:\mathcal \{M\} f\rightarrow \mathcal \{V\}\mathcal \{B\}$ with the point property we prove that $H$ is product preserving if and only if for any $m$ and $n$ there is an $\mathcal \{F\}\mathcal \{M\}_\{m,n\}$-natural operator $D$ transforming connections $\Gamma $ on $(m,n)$-dimensional fibered manifolds $p:Y\rightarrow M$ into connections $D(\Gamma )$ on $Hp:HY\rightarrow HM$. For a bundle functor $E:\mathcal \{F\}\mathcal \{M\}_\{m,n\}\rightarrow \mathcal \{F\}\mathcal \{M\}$ with some weak conditions we prove non-existence of $\mathcal \{F\}\mathcal \{M\}_\{m,n\}$-natural operators $D$ transforming connections $\Gamma $ on $(m,n)$-dimensional fibered manifolds $Y\rightarrow M$ into connections $D(\Gamma )$ on $EY\rightarrow M$.},
author = {Mikulski, Włodzimierz M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {(general) connection; natural operator; natural operator},
language = {eng},
number = {4},
pages = {691-695},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Non-existence of some canonical constructions on connections},
url = {http://eudml.org/doc/249186},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Mikulski, Włodzimierz M.
TI - Non-existence of some canonical constructions on connections
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 4
SP - 691
EP - 695
AB - For a vector bundle functor $H:\mathcal {M} f\rightarrow \mathcal {V}\mathcal {B}$ with the point property we prove that $H$ is product preserving if and only if for any $m$ and $n$ there is an $\mathcal {F}\mathcal {M}_{m,n}$-natural operator $D$ transforming connections $\Gamma $ on $(m,n)$-dimensional fibered manifolds $p:Y\rightarrow M$ into connections $D(\Gamma )$ on $Hp:HY\rightarrow HM$. For a bundle functor $E:\mathcal {F}\mathcal {M}_{m,n}\rightarrow \mathcal {F}\mathcal {M}$ with some weak conditions we prove non-existence of $\mathcal {F}\mathcal {M}_{m,n}$-natural operators $D$ transforming connections $\Gamma $ on $(m,n)$-dimensional fibered manifolds $Y\rightarrow M$ into connections $D(\Gamma )$ on $EY\rightarrow M$.
LA - eng
KW - (general) connection; natural operator; natural operator
UR - http://eudml.org/doc/249186
ER -
References
top- Doupovec M., Mikulski W.M, Horizontal extension of connections into -connections, to appear. MR2103898
- Kolář I., On generalized connections, Beiträge Algebra Geom. 11 (1981), 29-34. (1981) MR0680454
- Kolář I., Michor P.W., Slovák J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. MR1202431
- Kolář I., Mikulski W.M., Natural lifting of connections to vertical bundles, Suppl. Rend. Circolo Math. Palermo II 63 (2000), 97-102. (2000) MR1758084
- Mikulski W.M., Non-existence of a connection on canonically dependent on a connection on , Arch. Math. Brno, to appear. MR2142138
- Slovák J., Prolongations of connections and sprays with respect to Weil functors, Suppl. Rend. Circ. Mat. Palermo, Serie II 14 (1987), 143-155. (1987) MR0920852
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.