Non-existence of some canonical constructions on connections

Włodzimierz M. Mikulski

Commentationes Mathematicae Universitatis Carolinae (2003)

  • Volume: 44, Issue: 4, page 691-695
  • ISSN: 0010-2628

Abstract

top
For a vector bundle functor H : f 𝒱 with the point property we prove that H is product preserving if and only if for any m and n there is an m , n -natural operator D transforming connections Γ on ( m , n ) -dimensional fibered manifolds p : Y M into connections D ( Γ ) on H p : H Y H M . For a bundle functor E : m , n with some weak conditions we prove non-existence of m , n -natural operators D transforming connections Γ on ( m , n ) -dimensional fibered manifolds Y M into connections D ( Γ ) on E Y M .

How to cite

top

Mikulski, Włodzimierz M.. "Non-existence of some canonical constructions on connections." Commentationes Mathematicae Universitatis Carolinae 44.4 (2003): 691-695. <http://eudml.org/doc/249186>.

@article{Mikulski2003,
abstract = {For a vector bundle functor $H:\mathcal \{M\} f\rightarrow \mathcal \{V\}\mathcal \{B\}$ with the point property we prove that $H$ is product preserving if and only if for any $m$ and $n$ there is an $\mathcal \{F\}\mathcal \{M\}_\{m,n\}$-natural operator $D$ transforming connections $\Gamma $ on $(m,n)$-dimensional fibered manifolds $p:Y\rightarrow M$ into connections $D(\Gamma )$ on $Hp:HY\rightarrow HM$. For a bundle functor $E:\mathcal \{F\}\mathcal \{M\}_\{m,n\}\rightarrow \mathcal \{F\}\mathcal \{M\}$ with some weak conditions we prove non-existence of $\mathcal \{F\}\mathcal \{M\}_\{m,n\}$-natural operators $D$ transforming connections $\Gamma $ on $(m,n)$-dimensional fibered manifolds $Y\rightarrow M$ into connections $D(\Gamma )$ on $EY\rightarrow M$.},
author = {Mikulski, Włodzimierz M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {(general) connection; natural operator; natural operator},
language = {eng},
number = {4},
pages = {691-695},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Non-existence of some canonical constructions on connections},
url = {http://eudml.org/doc/249186},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Mikulski, Włodzimierz M.
TI - Non-existence of some canonical constructions on connections
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 4
SP - 691
EP - 695
AB - For a vector bundle functor $H:\mathcal {M} f\rightarrow \mathcal {V}\mathcal {B}$ with the point property we prove that $H$ is product preserving if and only if for any $m$ and $n$ there is an $\mathcal {F}\mathcal {M}_{m,n}$-natural operator $D$ transforming connections $\Gamma $ on $(m,n)$-dimensional fibered manifolds $p:Y\rightarrow M$ into connections $D(\Gamma )$ on $Hp:HY\rightarrow HM$. For a bundle functor $E:\mathcal {F}\mathcal {M}_{m,n}\rightarrow \mathcal {F}\mathcal {M}$ with some weak conditions we prove non-existence of $\mathcal {F}\mathcal {M}_{m,n}$-natural operators $D$ transforming connections $\Gamma $ on $(m,n)$-dimensional fibered manifolds $Y\rightarrow M$ into connections $D(\Gamma )$ on $EY\rightarrow M$.
LA - eng
KW - (general) connection; natural operator; natural operator
UR - http://eudml.org/doc/249186
ER -

References

top
  1. Doupovec M., Mikulski W.M, Horizontal extension of connections into ( 2 ) -connections, to appear. MR2103898
  2. Kolář I., On generalized connections, Beiträge Algebra Geom. 11 (1981), 29-34. (1981) MR0680454
  3. Kolář I., Michor P.W., Slovák J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. MR1202431
  4. Kolář I., Mikulski W.M., Natural lifting of connections to vertical bundles, Suppl. Rend. Circolo Math. Palermo II 63 (2000), 97-102. (2000) MR1758084
  5. Mikulski W.M., Non-existence of a connection on F Y Y canonically dependent on a connection on Y M , Arch. Math. Brno, to appear. MR2142138
  6. Slovák J., Prolongations of connections and sprays with respect to Weil functors, Suppl. Rend. Circ. Mat. Palermo, Serie II 14 (1987), 143-155. (1987) MR0920852

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.