The limit lemma in fragments of arithmetic
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 3, page 565-568
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topŠvejdar, Vítězslav. "The limit lemma in fragments of arithmetic." Commentationes Mathematicae Universitatis Carolinae 44.3 (2003): 565-568. <http://eudml.org/doc/249193>.
@article{Švejdar2003,
abstract = {The recursion theoretic limit lemma, saying that each function with a $\varSigma _\{n+2\}$ graph is a limit of certain function with a $\varDelta _\{n+1\}$ graph, is provable in $\text\{\rm B\}\Sigma _\{n+1\}$.},
author = {Švejdar, Vítězslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {limit lemma; fragments of arithmetic; collection scheme; axiomatisation of arithmetic; limit lemma; fragments of arithmetic; collection scheme; recursive functions},
language = {eng},
number = {3},
pages = {565-568},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The limit lemma in fragments of arithmetic},
url = {http://eudml.org/doc/249193},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Švejdar, Vítězslav
TI - The limit lemma in fragments of arithmetic
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 3
SP - 565
EP - 568
AB - The recursion theoretic limit lemma, saying that each function with a $\varSigma _{n+2}$ graph is a limit of certain function with a $\varDelta _{n+1}$ graph, is provable in $\text{\rm B}\Sigma _{n+1}$.
LA - eng
KW - limit lemma; fragments of arithmetic; collection scheme; axiomatisation of arithmetic; limit lemma; fragments of arithmetic; collection scheme; recursive functions
UR - http://eudml.org/doc/249193
ER -
References
top- Clote P., Partition relations in arithmetic, in C.A. DiPrisco, Ed., {Methods in Mathematical Logic}, Lecture Notes in Mathematics 1130, Springer, 1985, pp.32-68. Zbl0567.03029MR0799036
- Hájek P., Kučera A., On recursion theory in , J. Symbolic Logic 54 (1989), 576-589. (1989) MR0997890
- Hájek P., Pudlák P., Metamathematics of First Order Arithmetic, Springer, 1993. MR1219738
- Kučera A., An alternative, priority-free, solution to Post's problem, in J. Gruska, B. Rovan, and J. Wiedermann, Eds., {Mathematical Foundations of Computer Science 1986} (Bratislava, Czechoslovakia, August 25-29, 1986), Lecture Notes in Computer Science 233, Springer, 1986, pp.493-500. Zbl0615.03033MR0874627
- Rogers H., Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967. Zbl0256.02015MR0224462
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.