Displaying similar documents to “The limit lemma in fragments of arithmetic”

A note on Δ₁ induction and Σ₁ collection

Neil Thapen (2005)

Fundamenta Mathematicae

Similarity:

Slaman recently proved that Σₙ collection is provable from Δₙ induction plus exponentiation, partially answering a question of Paris. We give a new version of this proof for the case n = 1, which only requires the following very weak form of exponentiation: " x y exists for some y sufficiently large that x is smaller than some primitive recursive function of y".

Herbrand consistency and bounded arithmetic

Zofia Adamowicz (2002)

Fundamenta Mathematicae

Similarity:

We prove that the Gödel incompleteness theorem holds for a weak arithmetic Tₘ = IΔ₀ + Ωₘ, for m ≥ 2, in the form Tₘ ⊬ HCons(Tₘ), where HCons(Tₘ) is an arithmetic formula expressing the consistency of Tₘ with respect to the Herbrand notion of provability. Moreover, we prove T H C o n s I ( T ) , where H C o n s I is HCons relativised to the definable cut Iₘ of (m-2)-times iterated logarithms. The proof is model-theoretic. We also prove a certain non-conservation result for Tₘ.

Product sets cannot contain long arithmetic progressions

Dmitrii Zhelezov (2014)

Acta Arithmetica

Similarity:

Let B be a set of complex numbers of size n. We prove that the length of the longest arithmetic progression contained in the product set B.B = bb’ | b,b’ ∈ B cannot be greater than O((nlog²n)/(loglogn)) and present an example of a product set containing an arithmetic progression of length Ω(nlogn). For sets of complex numbers we obtain the upper bound O ( n 3 / 2 ) .

Automorphisms of models of bounded arithmetic

Ali Enayat (2006)

Fundamenta Mathematicae

Similarity:

We establish the following model-theoretic characterization of the fragment IΔ₀ + Exp + BΣ₁ of Peano arithmetic in terms of fixed points of automorphisms of models of bounded arithmetic (the fragment IΔ₀ of Peano arithmetic with induction limited to Δ₀-formulae). Theorem A. The following two conditions are equivalent for a countable model of the language of arithmetic: (a) satisfies IΔ₀ + BΣ₁ + Exp; (b) = I f i x ( j ) for some nontrivial automorphism j of an end extension of that satisfies IΔ₀. Here...

Arithmetic labelings and geometric labelings of countable graphs

Gurusamy Rengasamy Vijayakumar (2010)

Discussiones Mathematicae Graph Theory

Similarity:

An injective map from the vertex set of a graph G-its order may not be finite-to the set of all natural numbers is called an arithmetic (a geometric) labeling of G if the map from the edge set which assigns to each edge the sum (product) of the numbers assigned to its ends by the former map, is injective and the range of the latter map forms an arithmetic (a geometric) progression. A graph is called arithmetic (geometric) if it admits an arithmetic (a geometric) labeling. In this article,...

Decomposing complete graphs into cubes

Saad I. El-Zanati, C. Vanden Eynden (2006)

Discussiones Mathematicae Graph Theory

Similarity:

This paper concerns when the complete graph on n vertices can be decomposed into d-dimensional cubes, where d is odd and n is even. (All other cases have been settled.) Necessary conditions are that n be congruent to 1 modulo d and 0 modulo 2 d . These are known to be sufficient for d equal to 3 or 5. For larger values of d, the necessary conditions are asymptotically sufficient by Wilson’s results. We prove that for each odd d there is an infinite arithmetic progression of even integers...