Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in
Dimitrios A. Kandilakis; Athanasios N. Lyberopoulos
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 4, page 645-658
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKandilakis, Dimitrios A., and Lyberopoulos, Athanasios N.. "Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in $\mathbb {R}^n$." Commentationes Mathematicae Universitatis Carolinae 44.4 (2003): 645-658. <http://eudml.org/doc/249209>.
@article{Kandilakis2003,
abstract = {We show that, under appropriate structure conditions, the quasilinear Dirichlet problem \[ \left\lbrace \begin\{array\}\{ll\}-\operatorname\{div\}(|\nabla u|^\{p-2\}\nabla u) =f(x,u), \quad & x\in \Omega , \ u=0, & x\in \partial \Omega , \end\{array\}\right.\]
where $\Omega $is a bounded domain in $\mathbb \{R\}^n$, $1<p<+\infty $, admits two positive solutions $u_\{0\}$, $u_\{1\}$ in $W_\{0\}^\{1,p\}(\Omega )$ such that $0<u_\{0\}\le u_\{1\}$ in $\Omega $, while $u_\{0\}$ is a local minimizer of the associated Euler-Lagrange functional.},
author = {Kandilakis, Dimitrios A., Lyberopoulos, Athanasios N.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$p$-Laplacian; positive solutions; sub- and supersolutions; local minimizers; Palais-Smale condition; -Laplacian; positive solutions; local minimizers; Palais-Smale condition},
language = {eng},
number = {4},
pages = {645-658},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in $\mathbb \{R\}^n$},
url = {http://eudml.org/doc/249209},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Kandilakis, Dimitrios A.
AU - Lyberopoulos, Athanasios N.
TI - Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in $\mathbb {R}^n$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 4
SP - 645
EP - 658
AB - We show that, under appropriate structure conditions, the quasilinear Dirichlet problem \[ \left\lbrace \begin{array}{ll}-\operatorname{div}(|\nabla u|^{p-2}\nabla u) =f(x,u), \quad & x\in \Omega , \ u=0, & x\in \partial \Omega , \end{array}\right.\]
where $\Omega $is a bounded domain in $\mathbb {R}^n$, $1<p<+\infty $, admits two positive solutions $u_{0}$, $u_{1}$ in $W_{0}^{1,p}(\Omega )$ such that $0<u_{0}\le u_{1}$ in $\Omega $, while $u_{0}$ is a local minimizer of the associated Euler-Lagrange functional.
LA - eng
KW - $p$-Laplacian; positive solutions; sub- and supersolutions; local minimizers; Palais-Smale condition; -Laplacian; positive solutions; local minimizers; Palais-Smale condition
UR - http://eudml.org/doc/249209
ER -
References
top- Ambrosetti A., Azorero J.G., Peral I., Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219-242. (1996) Zbl0852.35045MR1383017
- Ambrosetti A., Azorero J.G., Peral I., Existence and multiplicity results for some nonlinear elliptic equations: a survey, Rend. Matem., Ser. VII, 20 (2000), 167-198. (2000) Zbl1011.35049MR1823096
- Ambrosetti A., Brezis H., Cerami G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543. (1994) Zbl0805.35028MR1276168
- Ambrosetti A., Rabinowitz P., Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. (1973) Zbl0273.49063MR0370183
- Anane A., Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C.R.A.S. Paris Série I 305 (1987), 725-728. (1987) Zbl0633.35061MR0920052
- Azorero J.G., Alonso I.P., Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J. 43 3 (1994), 941-957. (1994) Zbl0822.35048MR1305954
- Azorero J.G., Alonso I.P., Manfredi J.J., Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math. 2 3 (2000), 385-404. (2000) MR1776988
- Boccardo L., Escobedo M., Peral I., A Dirichlet problem involving critical exponents, Nonlinear Anal. 24 (1995), 11 1639-1648. (1995) Zbl0828.35042MR1328589
- Brezis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. (1983) Zbl0541.35029MR0709644
- Brezis H., Nirenberg L., versus local minimizers, C.R.A.S. Paris Série I 317 (1993), 465-472. (1993) MR1239032
- Drábek P., Hernandez J., Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear Anal. 44 2 (2001), 189-204. (2001) Zbl0991.35035MR1816658
- Ghoussoub N., Preiss D., A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 5 (1989), 321-330. (1989) Zbl0711.58008MR1030853
- Guedda M., Veron L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 8 (1989), 879-902. (1989) Zbl0714.35032MR1009077
- Ladyzhenskaya O., Uraltseva N., Linear and Quasilinear Elliptic Equations, Academic Press, 1968. MR0244627
- Lieberman G., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219. (1988) Zbl0675.35042MR0969499
- Moser J., A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457-478. (1960) Zbl0111.09301MR0170091
- Sattinger D.H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979-1000. (1972) Zbl0223.35038MR0299921
- Vázquez J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202. (1984) MR0768629
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.