Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in n

Dimitrios A. Kandilakis; Athanasios N. Lyberopoulos

Commentationes Mathematicae Universitatis Carolinae (2003)

  • Volume: 44, Issue: 4, page 645-658
  • ISSN: 0010-2628

Abstract

top
We show that, under appropriate structure conditions, the quasilinear Dirichlet problem - div ( | u | p - 2 u ) = f ( x , u ) , x Ω , u = 0 , x Ω , where Ω is a bounded domain in n , 1 < p < + , admits two positive solutions u 0 , u 1 in W 0 1 , p ( Ω ) such that 0 < u 0 u 1 in Ω , while u 0 is a local minimizer of the associated Euler-Lagrange functional.

How to cite

top

Kandilakis, Dimitrios A., and Lyberopoulos, Athanasios N.. "Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in $\mathbb {R}^n$." Commentationes Mathematicae Universitatis Carolinae 44.4 (2003): 645-658. <http://eudml.org/doc/249209>.

@article{Kandilakis2003,
abstract = {We show that, under appropriate structure conditions, the quasilinear Dirichlet problem \[ \left\lbrace \begin\{array\}\{ll\}-\operatorname\{div\}(|\nabla u|^\{p-2\}\nabla u) =f(x,u), \quad & x\in \Omega , \ u=0, & x\in \partial \Omega , \end\{array\}\right.\] where $\Omega $is a bounded domain in $\mathbb \{R\}^n$, $1<p<+\infty $, admits two positive solutions $u_\{0\}$, $u_\{1\}$ in $W_\{0\}^\{1,p\}(\Omega )$ such that $0<u_\{0\}\le u_\{1\}$ in $\Omega $, while $u_\{0\}$ is a local minimizer of the associated Euler-Lagrange functional.},
author = {Kandilakis, Dimitrios A., Lyberopoulos, Athanasios N.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$p$-Laplacian; positive solutions; sub- and supersolutions; local minimizers; Palais-Smale condition; -Laplacian; positive solutions; local minimizers; Palais-Smale condition},
language = {eng},
number = {4},
pages = {645-658},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in $\mathbb \{R\}^n$},
url = {http://eudml.org/doc/249209},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Kandilakis, Dimitrios A.
AU - Lyberopoulos, Athanasios N.
TI - Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in $\mathbb {R}^n$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 4
SP - 645
EP - 658
AB - We show that, under appropriate structure conditions, the quasilinear Dirichlet problem \[ \left\lbrace \begin{array}{ll}-\operatorname{div}(|\nabla u|^{p-2}\nabla u) =f(x,u), \quad & x\in \Omega , \ u=0, & x\in \partial \Omega , \end{array}\right.\] where $\Omega $is a bounded domain in $\mathbb {R}^n$, $1<p<+\infty $, admits two positive solutions $u_{0}$, $u_{1}$ in $W_{0}^{1,p}(\Omega )$ such that $0<u_{0}\le u_{1}$ in $\Omega $, while $u_{0}$ is a local minimizer of the associated Euler-Lagrange functional.
LA - eng
KW - $p$-Laplacian; positive solutions; sub- and supersolutions; local minimizers; Palais-Smale condition; -Laplacian; positive solutions; local minimizers; Palais-Smale condition
UR - http://eudml.org/doc/249209
ER -

References

top
  1. Ambrosetti A., Azorero J.G., Peral I., Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219-242. (1996) Zbl0852.35045MR1383017
  2. Ambrosetti A., Azorero J.G., Peral I., Existence and multiplicity results for some nonlinear elliptic equations: a survey, Rend. Matem., Ser. VII, 20 (2000), 167-198. (2000) Zbl1011.35049MR1823096
  3. Ambrosetti A., Brezis H., Cerami G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543. (1994) Zbl0805.35028MR1276168
  4. Ambrosetti A., Rabinowitz P., Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. (1973) Zbl0273.49063MR0370183
  5. Anane A., Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C.R.A.S. Paris Série I 305 (1987), 725-728. (1987) Zbl0633.35061MR0920052
  6. Azorero J.G., Alonso I.P., Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J. 43 3 (1994), 941-957. (1994) Zbl0822.35048MR1305954
  7. Azorero J.G., Alonso I.P., Manfredi J.J., Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math. 2 3 (2000), 385-404. (2000) MR1776988
  8. Boccardo L., Escobedo M., Peral I., A Dirichlet problem involving critical exponents, Nonlinear Anal. 24 (1995), 11 1639-1648. (1995) Zbl0828.35042MR1328589
  9. Brezis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. (1983) Zbl0541.35029MR0709644
  10. Brezis H., Nirenberg L., H 1 versus C 1 local minimizers, C.R.A.S. Paris Série I 317 (1993), 465-472. (1993) MR1239032
  11. Drábek P., Hernandez J., Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear Anal. 44 2 (2001), 189-204. (2001) Zbl0991.35035MR1816658
  12. Ghoussoub N., Preiss D., A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 5 (1989), 321-330. (1989) Zbl0711.58008MR1030853
  13. Guedda M., Veron L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 8 (1989), 879-902. (1989) Zbl0714.35032MR1009077
  14. Ladyzhenskaya O., Uraltseva N., Linear and Quasilinear Elliptic Equations, Academic Press, 1968. MR0244627
  15. Lieberman G., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219. (1988) Zbl0675.35042MR0969499
  16. Moser J., A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457-478. (1960) Zbl0111.09301MR0170091
  17. Sattinger D.H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979-1000. (1972) Zbl0223.35038MR0299921
  18. Vázquez J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202. (1984) MR0768629

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.