Displaying similar documents to “Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in n

Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials

Dominic Breit (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We discuss regularity results concerning local minimizers u : n Ω n of variational integrals like Ω { F ( · , ε ( w ) ) - f · w } d x defined on energy classes of solenoidal fields. For the potential F we assume a ( p , q ) -elliptic growth condition. In the situation without x -dependence it is known that minimizers are of class C 1 , α on an open subset Ω 0 of Ω with full measure if q < p n + 2 n (for n = 2 we have Ω 0 = Ω ). In this article we extend this to the case of nonautonomous integrands. Of course our result extends to weak solutions of the corresponding...

On general solvability properties of p -Lapalacian-like equations

Pavel Drábek, Christian G. Simader (2002)

Mathematica Bohemica

Similarity:

We discuss how the choice of the functional setting and the definition of the weak solution affect the existence and uniqueness of the solution to the equation - Δ p u = f in Ω , where Ω is a very general domain in N , including the case Ω = N .

Transition from decay to blow-up in a parabolic system

Pavol Quittner (1998)

Archivum Mathematicum

Similarity:

We show a locally uniform bound for global nonnegative solutions of the system u t = Δ u + u v - b u , v t = Δ v + a u in ( 0 , + ) × Ω , u = v = 0 on ( 0 , + ) × Ω , where a > 0 , b 0 and Ω is a bounded domain in n , n 2 . In particular, the trajectories starting on the boundary of the domain of attraction of the zero solution are global and bounded.