On an approximation property of Pisot numbers II
Toufik Zaïmi[1]
- [1] King Saud University Dept. of Mathematics P. O. Box 2455 Riyadh 11451, Saudi Arabia
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 1, page 239-249
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topZaïmi, Toufik. "On an approximation property of Pisot numbers II." Journal de Théorie des Nombres de Bordeaux 16.1 (2004): 239-249. <http://eudml.org/doc/249246>.
@article{Zaïmi2004,
abstract = {Let $q$ be a complex number, $m$ be a positive rational integer and $l_\{m\}(q)=\inf \lbrace \left| P(q)\right| ,P\in \mathbb\{Z\}_\{m\}[X],P(q)\ne 0\rbrace $, where $\mathbb\{Z\}_\{m\}[X]$ denotes the set of polynomials with rational integer coefficients of absolute value $\le m$. We determine in this note the maximum of the quantities $l_\{m\}(q)$ when $q$ runs through the interval $]m,m+1[$. We also show that if $q$ is a non-real number of modulus $>1$, then $q$ is a complex Pisot number if and only if $l_\{m\}(q)>0$ for all $m$.},
affiliation = {King Saud University Dept. of Mathematics P. O. Box 2455 Riyadh 11451, Saudi Arabia},
author = {Zaïmi, Toufik},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Pisot number; beta-number; spectra},
language = {eng},
number = {1},
pages = {239-249},
publisher = {Université Bordeaux 1},
title = {On an approximation property of Pisot numbers II},
url = {http://eudml.org/doc/249246},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Zaïmi, Toufik
TI - On an approximation property of Pisot numbers II
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 1
SP - 239
EP - 249
AB - Let $q$ be a complex number, $m$ be a positive rational integer and $l_{m}(q)=\inf \lbrace \left| P(q)\right| ,P\in \mathbb{Z}_{m}[X],P(q)\ne 0\rbrace $, where $\mathbb{Z}_{m}[X]$ denotes the set of polynomials with rational integer coefficients of absolute value $\le m$. We determine in this note the maximum of the quantities $l_{m}(q)$ when $q$ runs through the interval $]m,m+1[$. We also show that if $q$ is a non-real number of modulus $>1$, then $q$ is a complex Pisot number if and only if $l_{m}(q)>0$ for all $m$.
LA - eng
KW - Pisot number; beta-number; spectra
UR - http://eudml.org/doc/249246
ER -
References
top- K. Alshalan and T. Zaimi, Some computations on the spectra of Pisot numbers. Submitted.
- D. Berend and C. Frougny, Computability by finite automata and Pisot Bases. Math. Systems Theory 27 (1994), 275–282. Zbl0819.11005MR1264390
- P. Borwein and K. G. Hare, Some computations on the spectra of Pisot and Salem numbers. Math. Comp. 71 No. 238 (2002), 767–780. Zbl1037.11065MR1885627
- D. W. Boyd, Salem numbers of degree four have periodic expansions. Number Theory (eds J.-H. de Coninck and C. Levesque, Walter de Gruyter, Berlin) 1989, 57–64. Zbl0685.12004MR1024551
- Y. Bugeaud, On a property of Pisot numbers and related questions. Acta Math. Hungar. 73 (1996), 33–39. Zbl0923.11148MR1415918
- P. Erdös, I. Joó and V. Komornik, Characterization of the unique expansions and related problems. Bull. Soc. Math. France 118 (1990), 377–390. Zbl0721.11005MR1078082
- P. Erdös, I. Joó and V. Komornik, On the sequence of numbers of the form {0,1}. Acta Arith. 83 (1998), 201–210. Zbl0896.11006MR1611185
- P. Erdös, I. Joó and F. J. Schnitzer, On Pisot numbers. Ann. Univ. Sci. Budapest Eotvos Sect. Math. 39 (1996), 95–99. Zbl0880.11067MR1451448
- P. Erdös and V. Komornik, Developments in non integer bases. Acta Math. Hungar. 79 (1998), 57–83. Zbl0906.11008MR1611948
- C. Frougny, Representations of numbers and finite automata. Math. Systems Theory 25 (1992), 37–60. Zbl0776.11005MR1139094
- V. Komornik, P. Loreti and M. Pedicini, An approximation property of Pisot numbers. J. Number Theory 80 (2000), 218–237. Zbl0962.11034MR1740512
- W. Parry, On the expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416. Zbl0099.28103MR142719
- A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Hungar. 8 (1957), 477–493. Zbl0079.08901MR97374
- B. Solomyak, Conjugates of beta-numbers and the zero-free domain for a class of analytic functions. Proc. London Math. Soc. 68 (1994), 477–498. Zbl0820.30007MR1262305
- T. Zaïmi, On an approximation property of Pisot numbers. Acta Math. Hungar. 96 (4) (2002), 309–325. Zbl1012.11092MR1922677
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.