On an approximation property of Pisot numbers II

Toufik Zaïmi[1]

  • [1] King Saud University Dept. of Mathematics P. O. Box 2455 Riyadh 11451, Saudi Arabia

Journal de Théorie des Nombres de Bordeaux (2004)

  • Volume: 16, Issue: 1, page 239-249
  • ISSN: 1246-7405

Abstract

top
Let q be a complex number, m be a positive rational integer and l m ( q ) = inf { P ( q ) , P m [ X ] , P ( q ) 0 } , where m [ X ] denotes the set of polynomials with rational integer coefficients of absolute value m . We determine in this note the maximum of the quantities l m ( q ) when q runs through the interval ] m , m + 1 [ . We also show that if q is a non-real number of modulus > 1 , then q is a complex Pisot number if and only if l m ( q ) > 0 for all m .

How to cite

top

Zaïmi, Toufik. "On an approximation property of Pisot numbers II." Journal de Théorie des Nombres de Bordeaux 16.1 (2004): 239-249. <http://eudml.org/doc/249246>.

@article{Zaïmi2004,
abstract = {Let $q$ be a complex number, $m$ be a positive rational integer and $l_\{m\}(q)=\inf \lbrace \left| P(q)\right| ,P\in \mathbb\{Z\}_\{m\}[X],P(q)\ne 0\rbrace $, where $\mathbb\{Z\}_\{m\}[X]$ denotes the set of polynomials with rational integer coefficients of absolute value $\le m$. We determine in this note the maximum of the quantities $l_\{m\}(q)$ when $q$ runs through the interval $]m,m+1[$. We also show that if $q$ is a non-real number of modulus $&gt;1$, then $q$ is a complex Pisot number if and only if $l_\{m\}(q)&gt;0$ for all $m$.},
affiliation = {King Saud University Dept. of Mathematics P. O. Box 2455 Riyadh 11451, Saudi Arabia},
author = {Zaïmi, Toufik},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Pisot number; beta-number; spectra},
language = {eng},
number = {1},
pages = {239-249},
publisher = {Université Bordeaux 1},
title = {On an approximation property of Pisot numbers II},
url = {http://eudml.org/doc/249246},
volume = {16},
year = {2004},
}

TY - JOUR
AU - Zaïmi, Toufik
TI - On an approximation property of Pisot numbers II
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 1
SP - 239
EP - 249
AB - Let $q$ be a complex number, $m$ be a positive rational integer and $l_{m}(q)=\inf \lbrace \left| P(q)\right| ,P\in \mathbb{Z}_{m}[X],P(q)\ne 0\rbrace $, where $\mathbb{Z}_{m}[X]$ denotes the set of polynomials with rational integer coefficients of absolute value $\le m$. We determine in this note the maximum of the quantities $l_{m}(q)$ when $q$ runs through the interval $]m,m+1[$. We also show that if $q$ is a non-real number of modulus $&gt;1$, then $q$ is a complex Pisot number if and only if $l_{m}(q)&gt;0$ for all $m$.
LA - eng
KW - Pisot number; beta-number; spectra
UR - http://eudml.org/doc/249246
ER -

References

top
  1. K. Alshalan and T. Zaimi, Some computations on the spectra of Pisot numbers. Submitted. 
  2. D. Berend and C. Frougny, Computability by finite automata and Pisot Bases. Math. Systems Theory 27 (1994), 275–282. Zbl0819.11005MR1264390
  3. P. Borwein and K. G. Hare, Some computations on the spectra of Pisot and Salem numbers. Math. Comp. 71 No. 238 (2002), 767–780. Zbl1037.11065MR1885627
  4. D. W. Boyd, Salem numbers of degree four have periodic expansions. Number Theory (eds J.-H. de Coninck and C. Levesque, Walter de Gruyter, Berlin) 1989, 57–64. Zbl0685.12004MR1024551
  5. Y. Bugeaud, On a property of Pisot numbers and related questions. Acta Math. Hungar. 73 (1996), 33–39. Zbl0923.11148MR1415918
  6. P. Erdös, I. Joó and V. Komornik, Characterization of the unique expansions 1 = i 1 q - n i and related problems. Bull. Soc. Math. France 118 (1990), 377–390. Zbl0721.11005MR1078082
  7. P. Erdös, I. Joó and V. Komornik, On the sequence of numbers of the form ε 0 + ε 1 q + ... + ε n q n ε i {0,1}. Acta Arith. 83 (1998), 201–210. Zbl0896.11006MR1611185
  8. P. Erdös, I. Joó and F. J. Schnitzer, On Pisot numbers. Ann. Univ. Sci. Budapest Eotvos Sect. Math. 39 (1996), 95–99. Zbl0880.11067MR1451448
  9. P. Erdös and V. Komornik, Developments in non integer bases. Acta Math. Hungar. 79 (1998), 57–83. Zbl0906.11008MR1611948
  10. C. Frougny, Representations of numbers and finite automata. Math. Systems Theory 25 (1992), 37–60. Zbl0776.11005MR1139094
  11. V. Komornik, P. Loreti and M. Pedicini, An approximation property of Pisot numbers. J. Number Theory 80 (2000), 218–237. Zbl0962.11034MR1740512
  12. W. Parry, On the β - expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416. Zbl0099.28103MR142719
  13. A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Hungar. 8 (1957), 477–493. Zbl0079.08901MR97374
  14. B. Solomyak, Conjugates of beta-numbers and the zero-free domain for a class of analytic functions. Proc. London Math. Soc. 68 (1994), 477–498. Zbl0820.30007MR1262305
  15. T. Zaïmi, On an approximation property of Pisot numbers. Acta Math. Hungar. 96 (4) (2002), 309–325. Zbl1012.11092MR1922677

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.