Strongly modular lattices with long shadow

Gabriele Nebe[1]

  • [1] Abteilung Reine Mathematik Universität Ulm 89069 Ulm, Germany

Journal de Théorie des Nombres de Bordeaux (2004)

  • Volume: 16, Issue: 1, page 187-196
  • ISSN: 1246-7405

Abstract

top
This article classifies the strongly modular lattices with longest and second longest possible shadow.

How to cite

top

Nebe, Gabriele. "Strongly modular lattices with long shadow." Journal de Théorie des Nombres de Bordeaux 16.1 (2004): 187-196. <http://eudml.org/doc/249251>.

@article{Nebe2004,
abstract = {This article classifies the strongly modular lattices with longest and second longest possible shadow.},
affiliation = {Abteilung Reine Mathematik Universität Ulm 89069 Ulm, Germany},
author = {Nebe, Gabriele},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {strongly modular lattice; shadow of a lattice},
language = {eng},
number = {1},
pages = {187-196},
publisher = {Université Bordeaux 1},
title = {Strongly modular lattices with long shadow},
url = {http://eudml.org/doc/249251},
volume = {16},
year = {2004},
}

TY - JOUR
AU - Nebe, Gabriele
TI - Strongly modular lattices with long shadow
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 1
SP - 187
EP - 196
AB - This article classifies the strongly modular lattices with longest and second longest possible shadow.
LA - eng
KW - strongly modular lattice; shadow of a lattice
UR - http://eudml.org/doc/249251
ER -

References

top
  1. N.D. Elkies, A characterization of the n lattice. Math. Res. Lett. 2 no. 3 (1995), 321–326. Zbl0855.11032MR1338791
  2. N.D. Elkies, Lattices and codes with long shadows. Math. Res. Lett. 2 no. 5 (1995), 643–651. Zbl0854.11021MR1359968
  3. M. Gaulter, Lattices without short characteristic vectors. Math. Res. Lett. 5 no. 3 (1998), 353–362. Zbl0930.11045MR1637828
  4. C. L. Mallows, A. M. Odlysko, N. J. A. Sloane, Upper bounds for modular forms, lattices and codes. J. Alg. 36 (1975), 68–76. Zbl0311.94002MR376536
  5. T. Miyake, Modular Forms. Springer (1989). Zbl1159.11014MR1021004
  6. G. Nebe, N.J.A. Sloane, A database of lattices. http://www.research.att.com/~njas/lattices 
  7. H.-G. Quebbemann, Modular lattices in euclidean spaces. J. Number Th. 54 (1995), 190–202. Zbl0874.11038MR1354045
  8. H.-G. Quebbemann, Atkin-Lehner eigenforms and strongly modular lattices. L’Ens. Math. 43 (1997), 55–65. Zbl0898.11014MR1460122
  9. E.M. Rains, N.J.A. Sloane, The shadow theory of modular and unimodular lattices. J. Number Th. 73 (1998), 359–389. Zbl0917.11026MR1657980

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.