S-extremal strongly modular lattices
Gabriele Nebe[1]; Kristina Schindelar[1]
- [1] Lehrstuhl D für Mathematik RWTH Aachen 52056 Aachen, Germany
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 3, page 683-701
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topNebe, Gabriele, and Schindelar, Kristina. "S-extremal strongly modular lattices." Journal de Théorie des Nombres de Bordeaux 19.3 (2007): 683-701. <http://eudml.org/doc/249978>.
@article{Nebe2007,
abstract = {S-extremal strongly modular lattices maximize the minimum of the lattice and its shadow simultaneously. They are a direct generalization of the s-extremal unimodular lattices defined in [6]. If the minimum of the lattice is even, then the dimension of an s-extremal lattices can be bounded by the theory of modular forms. This shows that such lattices are also extremal and that there are only finitely many s-extremal strongly modular lattices of even minimum.},
affiliation = {Lehrstuhl D für Mathematik RWTH Aachen 52056 Aachen, Germany; Lehrstuhl D für Mathematik RWTH Aachen 52056 Aachen, Germany},
author = {Nebe, Gabriele, Schindelar, Kristina},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {extremal strongly modular lattices},
language = {eng},
number = {3},
pages = {683-701},
publisher = {Université Bordeaux 1},
title = {S-extremal strongly modular lattices},
url = {http://eudml.org/doc/249978},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Nebe, Gabriele
AU - Schindelar, Kristina
TI - S-extremal strongly modular lattices
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 3
SP - 683
EP - 701
AB - S-extremal strongly modular lattices maximize the minimum of the lattice and its shadow simultaneously. They are a direct generalization of the s-extremal unimodular lattices defined in [6]. If the minimum of the lattice is even, then the dimension of an s-extremal lattices can be bounded by the theory of modular forms. This shows that such lattices are also extremal and that there are only finitely many s-extremal strongly modular lattices of even minimum.
LA - eng
KW - extremal strongly modular lattices
UR - http://eudml.org/doc/249978
ER -
References
top- N.G. de Bruijn, Asymptotic methods in analysis. 2nd edition, North Holland (1961). Zbl0109.03502
- J. Cannon et al., The Magma Computational Algebra System for Algebra, Number Theory and Geometry. Published electronically at http://magma.maths.usyd.edu.au/magma/.
- J. H. Conway, N. J. A. Sloane, A note on optimal unimodular lattices. J. Number Theory 72 (1998), no. 2, 357–362. Zbl0917.11027MR1651697
- J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups. Springer, 3. edition, 1998. Zbl0915.52003
- N. D. Elkies, Lattices and codes with long shadows. Math. Res. Lett. 2 (1995), no. 5, 643–651. Zbl0854.11021MR1359968
- P. Gaborit, A bound for certain s-extremal lattices and codes. Archiv der Mathematik 89 (2007), 143–151. Zbl1127.11046MR2341725
- M. Kneser, Klassenzahlen definiter quadratischer Formen. Archiv der Math. 8 (1957), 241–250. Zbl0078.03801MR90606
- C. L. Mallows, A. M. Odlysko, N. J. A. Sloane, Upper bounds for modular forms, lattices and codes. J. Alg. 36 (1975), 68–76. Zbl0311.94002MR376536
- G. Nebe, Strongly modular lattices with long shadow. J. T. Nombres Bordeaux 16 (2004), 187–196. Zbl1078.11047MR2145580
- G. Nebe, B. Venkov, Unimodular lattices with long shadow. J. Number Theory 99 (2003), 307–317. Zbl1081.11049MR1968455
- H.-G. Quebbemann, Atkin-Lehner eigenforms and strongly modular lattices. L’Ens. Math. 43 (1997), 55–65. Zbl0898.11014
- E.M. Rains, New asymptotic bounds for self-dual codes and lattices. IEEE Trans. Inform. Theory 49 (2003), no. 5, 1261–1274. Zbl1063.94123MR1984825
- E.M. Rains, N.J.A. Sloane, The shadow theory of modular and unimodular lattices. J. Number Th. 73 (1998), 359–389. Zbl0917.11026MR1657980
- R. Scharlau, R. Schulze-Pillot, Extremal lattices. In Algorithmic algebra and number theory, Herausgegeben von B. H. Matzat, G. M. Greuel, G. Hiss. Springer, 1999, 139–170. Zbl0944.11012MR1672117
- K. Schindelar, Stark modulare Gitter mit langem Schatten. Diplomarbeit, Lehrstuhl D für Mathematik, RWTH Aachen (2006).
- E.T. Whittaker, G.N. Watson, A course of modern analysis (4th edition) Cambridge University Press, 1963. Zbl0108.26903MR1424469
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.