Average order in cyclic groups
Joachim von zur Gathen[1]; Arnold Knopfmacher[2]; Florian Luca[3]; Lutz G. Lucht[4]; Igor E. Shparlinski[5]
- [1] Fakultät für Elektrotechnik, Informatik und Mathematik Universität Paderborn, 33095 Paderborn, Germany
- [2] The John Knopfmacher Centre for Applicable Analysis and Number Theory University of the Witwatersrand P.O. Wits 2050, South Africa
- [3] Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58180, Morelia, Michoacán, México
- [4] Institut für Mathematik TU Clausthal, Erzstraße 1 38678 Clausthal-Zellerfeld, Germany
- [5] Department of Computing Macquarie University Sydney, NSW 2109, Australia
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 1, page 107-123
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topvon zur Gathen, Joachim, et al. "Average order in cyclic groups." Journal de Théorie des Nombres de Bordeaux 16.1 (2004): 107-123. <http://eudml.org/doc/249256>.
@article{vonzurGathen2004,
abstract = {For each natural number $n$ we determine the average order $\alpha (n)$ of the elements in a cyclic group of order $n$. We show that more than half of the contribution to $\alpha (n)$ comes from the $\varphi (n)$ primitive elements of order $n$. It is therefore of interest to study also the function $\beta (n)=\alpha (n)/\varphi (n)$. We determine the mean behavior of $\alpha $, $\beta $, $1/\beta $, and also consider these functions in the multiplicative groups of finite fields.},
affiliation = {Fakultät für Elektrotechnik, Informatik und Mathematik Universität Paderborn, 33095 Paderborn, Germany; The John Knopfmacher Centre for Applicable Analysis and Number Theory University of the Witwatersrand P.O. Wits 2050, South Africa; Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58180, Morelia, Michoacán, México; Institut für Mathematik TU Clausthal, Erzstraße 1 38678 Clausthal-Zellerfeld, Germany; Department of Computing Macquarie University Sydney, NSW 2109, Australia},
author = {von zur Gathen, Joachim, Knopfmacher, Arnold, Luca, Florian, Lucht, Lutz G., Shparlinski, Igor E.},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {107-123},
publisher = {Université Bordeaux 1},
title = {Average order in cyclic groups},
url = {http://eudml.org/doc/249256},
volume = {16},
year = {2004},
}
TY - JOUR
AU - von zur Gathen, Joachim
AU - Knopfmacher, Arnold
AU - Luca, Florian
AU - Lucht, Lutz G.
AU - Shparlinski, Igor E.
TI - Average order in cyclic groups
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 1
SP - 107
EP - 123
AB - For each natural number $n$ we determine the average order $\alpha (n)$ of the elements in a cyclic group of order $n$. We show that more than half of the contribution to $\alpha (n)$ comes from the $\varphi (n)$ primitive elements of order $n$. It is therefore of interest to study also the function $\beta (n)=\alpha (n)/\varphi (n)$. We determine the mean behavior of $\alpha $, $\beta $, $1/\beta $, and also consider these functions in the multiplicative groups of finite fields.
LA - eng
UR - http://eudml.org/doc/249256
ER -
References
top- T. M. Apostol (1976), Introduction to Analytic Number Theory. Springer-Verlag, New York. Zbl0335.10001MR434929
- P. T. Bateman (1972) . The distribution of values of the Euler function. Acta Arithmetica 21, 329–345. Zbl0217.31901MR302586
- C. K. Caldwell & Y. Gallot (2000), Some results for and . Preprint.
- J. R. Chen (1973), On the representation of a large even integer as a sum of a prime and a product of at most two primes. Scientia Sinica 16, 157–176. Zbl0319.10056MR434997
- P. D. T. A. Elliott (1985), Arithmetic functions and integer products, volume 272 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York. Zbl0559.10032MR766558
- K. Ford (1999), The number of solutions of . Annals of Mathematics 150, 1–29. Zbl0978.11053MR1715326
- H. Halberstam & H.E. Richert (1974), Sieve Methods. Academic Press. Zbl0298.10026MR424730
- G. H. Hardy & E. M. Wright (1962), An introduction to the theory of numbers. Clarendon Press, Oxford. 1st edition 1938. Zbl0020.29201MR67125
- K.-H. Indlekofer (1980), A mean-value theorem for multiplicative functions. Mathematische Zeitschrift 172, 255–271. Zbl0416.10035MR581443
- K.-H. Indlekofer (1981), Limiting distributions and mean-values of multiplicative arithmetical functions. Journal für die reine und angewandte Mathematik 328, 116–127. Zbl0455.10036MR636199
- W. Keller (2000). Private communication.
- D. G. Kendall & R. A. Rankin (1947), On the number of Abelian groups of a given order. Quarterly Journal of Mathematics 18, 197–208. Zbl0031.15303MR22569
- J. Knopfmacher (1972), Arithmetical properties of finite rings and algebras, and analytic number theory. II. Journal für die reine und angewandte Mathematik 254, 74–99. Zbl0246.10033MR364132
- J. Knopfmacher (1973), A prime divisor function. Proceedings of the American Mathematical Society 40, 373–377. Zbl0267.10059MR327694
- J. Knopfmacher & J. N. Ridley (1974), Prime-Independent Arithmetical Functions. Annali di Matematica 101(4), 153–169. Zbl0293.10026MR392872
- W. LeVeque (1977), Fundamentals of Number Theory. Addison-Wesley. Zbl0368.10001MR480290
- H. L. Montgomery (1970), Primes in arithmetic progressions. Michigan Mathematical Journal 17, 33–39. Zbl0209.34804MR257005
- H. L. Montgomery (1987), fluctuations in the mean of Euler’s phi function. Proceedings of the Indian Academy of Sciences (Mathematical Sciences) 97(1-3), 239–245. Zbl0656.10042MR983617
- A. G. Postnikov (1988), Introduction to analytic number theory. Volume 68 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI. Zbl0641.10001MR932727
- H. Riesel & R. C. Vaughan (1983), On sums of primes. Arkiv for Matematik 21(1), 46–74. Zbl0516.10044MR706639
- I. E. Shparlinski (1990), Some arithmetic properties of recurrence sequences. Matematicheskie Zametki 47(6), 124–131. (in Russian); English translation in Mathematical Notes 47, (1990), 612–617. Zbl0714.11009MR1074537
- P. J. Stephens (1969), An Average Result for Artin’s Conjecture. Mathematika 16(31), 178–188. Zbl0186.08402MR498449
- A. Walfisz (1963), Weylsche Exponentialsummen in der neueren Zahlentheorie. Number 15 in Mathematische Forschungsberichte. VEB Deutscher Verlag der Wissenschaften, Berlin. Zbl0146.06003MR220685
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.