On Tate’s refinement for a conjecture of Gross and its generalization
Noboru Aoki[1]
- [1] Department of Mathematics Rikkyo University Nishi-Ikebukuro, Toshima-ku Tokyo 171-8501, Japan
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 3, page 457-486
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topAoki, Noboru. "On Tate’s refinement for a conjecture of Gross and its generalization." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 457-486. <http://eudml.org/doc/249258>.
@article{Aoki2004,
abstract = {We study Tate’s refinement for a conjecture of Gross on the values of abelian $L$-function at $s=0$ and formulate its generalization to arbitrary cyclic extensions. We prove that our generalized conjecture is true in the case of number fields. This in particular implies that Tate’s refinement is true for any number field.},
affiliation = {Department of Mathematics Rikkyo University Nishi-Ikebukuro, Toshima-ku Tokyo 171-8501, Japan},
author = {Aoki, Noboru},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Abelian -functions; Gross's conjecture; Stickelberger element},
language = {eng},
number = {3},
pages = {457-486},
publisher = {Université Bordeaux 1},
title = {On Tate’s refinement for a conjecture of Gross and its generalization},
url = {http://eudml.org/doc/249258},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Aoki, Noboru
TI - On Tate’s refinement for a conjecture of Gross and its generalization
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 457
EP - 486
AB - We study Tate’s refinement for a conjecture of Gross on the values of abelian $L$-function at $s=0$ and formulate its generalization to arbitrary cyclic extensions. We prove that our generalized conjecture is true in the case of number fields. This in particular implies that Tate’s refinement is true for any number field.
LA - eng
KW - Abelian -functions; Gross's conjecture; Stickelberger element
UR - http://eudml.org/doc/249258
ER -
References
top- N. Aoki, Gross’ conjecture on the special values of abelian -functions at . Comm. Math. Univ. Sancti Pauli 40 (1991), 101–124. Zbl0742.11055MR1104783
- N. Aoki, J. Lee, K.S. Tan, A refinement for a conjecture of Gross. In preparation.
- D. Burns, On relations between derivatives of abelian -functions at . Preprint (2002).
- D. Burns, J. Lee, On refined class number formula of Gross. To appear in J. Number Theory. Zbl1067.11072MR2072389
- Pi. Cassou-Nogues, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta -adiques. Inv. Math. 51 (1979), 29–59. Zbl0408.12015MR524276
- H. Darmon, Thaine’s method for circular units and a conjecture of Gross. Canadian J. Math. 47 (1995), 302–317. Zbl0844.11071MR1335080
- P. Deligne, K. Ribet, Values of Abelian -functions at negative integers over totally real fields. Inv. Math. 59 (1980), 227–286. Zbl0434.12009MR579702
- L.J. Federer, -adic -functions, Regulators, and Iwasawa modules. PhD thesis (1982), Princeton University. Zbl0504.12009
- B. Gross, On the values of abelian -functions at . J. Fac. Univ. Tokyo 35 (1988), 177–197. Zbl0681.12005MR931448
- D. Hayes, The refined -adic abelian Stark conjecture in function fields, Invent. Math. 94 (1988), 505–527. Zbl0666.12009MR969242
- A. Hayward, A class number formula for higher derivatives of abelian -functions, Compositio Math. 140 (2004), 99–120. Zbl1060.11075MR1984423
- S. Lang, Cyclotomic fields II. GTM 69, Springer-Verlag, New-York Heidelberg Berlin (1980). Zbl0435.12001MR566952
- J. Lee, On Gross’s Refined Class Number Formula for Elementary Abelian Extensions. J. Math. Sci. Univ. Tokyo 4 (1997), 373–383. Zbl0903.11027MR1466351
- J. Lee, Stickelberger elements for cyclic extensions and the order of zero of abelian -functions at . Compositio. Math. 138 (2003), 157–163. Zbl1057.11053MR2018824
- J. Lee, On the refined class number formula for global function fields. To appear in Math. Res. Letters. Zbl1112.11053MR2106227
- M. Reid, Gross’ conjecture for extensions ramified over three points of . J. Math. Sci. Univ. Tokyo 10 (2003), 119–138. Zbl1060.11079MR1963800
- K. Rubin, A Stark conjecture “over " for abelian -functions with multiple zeros. Ann. Inst. Fourier, Grenoble 46, 1 (1996), 33–62. Zbl0834.11044MR1385509
- J.-P. Serre, Local Fields. GTM 67, Springer-Verlag. Zbl0423.12016MR554237
- K.-S. Tan, On the special values of abelian -functions. J. Math. Sci. Univ. Tokyo 1 (1994), 305–319. Zbl0820.11069MR1317462
- K.-S. Tan, A note on the Stickelberger elements for cyclic -extensions over global function fields of characteristic . To appear in Math. Res. Letters. Zbl1149.11320MR2067472
- J. Tate, Les Conjectures de Stark sur les Fonctions d’Artin en . Progress in Math. 47, Birkhäuser, Boston-Basel-Stuttgart (1984). Zbl0545.12009MR782485
- J. Tate, Refining Gross’s conjecture on the values of abelian -functions. To appear in Contemporary Math. Zbl1072.11087MR2088717
- M. Yamagishi, On a conjecture of Gross on special values of -functions. Math. Z. 201 (1989), 391–400. Zbl0689.12002MR999736
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.