Fundamental units in a family of cubic fields
- [1] Department of Mathematics University of Turku FIN-20014, Finland
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 3, page 569-575
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topEnnola, Veikko. "Fundamental units in a family of cubic fields." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 569-575. <http://eudml.org/doc/249260>.
@article{Ennola2004,
abstract = {Let $\mathcal\{O\}$ be the maximal order of the cubic field generated by a zero $\varepsilon $ of $x^3+(\ell -1)x^2-\ell x-1$ for $\ell \in \mathbb\{Z\}$, $\ell \ge 3$. We prove that $\varepsilon ,\varepsilon -1$ is a fundamental pair of units for $\mathcal\{O\}$, if $[\mathcal\{O\}:\mathbb\{Z\}[\varepsilon ]]\le \ell /3.$},
affiliation = {Department of Mathematics University of Turku FIN-20014, Finland},
author = {Ennola, Veikko},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {cubic field; fundamental unit; maximal order; non-abelian field; Maple computation},
language = {eng},
number = {3},
pages = {569-575},
publisher = {Université Bordeaux 1},
title = {Fundamental units in a family of cubic fields},
url = {http://eudml.org/doc/249260},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Ennola, Veikko
TI - Fundamental units in a family of cubic fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 569
EP - 575
AB - Let $\mathcal{O}$ be the maximal order of the cubic field generated by a zero $\varepsilon $ of $x^3+(\ell -1)x^2-\ell x-1$ for $\ell \in \mathbb{Z}$, $\ell \ge 3$. We prove that $\varepsilon ,\varepsilon -1$ is a fundamental pair of units for $\mathcal{O}$, if $[\mathcal{O}:\mathbb{Z}[\varepsilon ]]\le \ell /3.$
LA - eng
KW - cubic field; fundamental unit; maximal order; non-abelian field; Maple computation
UR - http://eudml.org/doc/249260
ER -
References
top- B. N. Delone, D. K. Faddeev, The Theory of Irrationalities of the Third Degree. Trudy Mat. Inst. Steklov, vol. 11 (1940); English transl., Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R. I., Second printing 1978. Zbl0133.30202MR4269
- V. Ennola, Cubic number fields with exceptional units. Computational Number Theory (A. Pethö et al., eds.), de Gruyter, Berlin, 1991, pp. 103–128. Zbl0732.11054MR1151859
- H. G. Grundman, Systems of fundamental units in cubic orders. J. Number Theory 50 (1995), 119–127. Zbl0828.11061MR1310739
- M. Mignotte, N. Tzanakis, On a family of cubics. J. Number Theory 39 (1991), 41–49, Corrigendum and addendum, 41 (1992), 128. Zbl0763.11011MR1123167
- E. Thomas, Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math. 310 (1979), 33–55. Zbl0427.12005MR546663
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.