# Fundamental units in a family of cubic fields

• [1] Department of Mathematics University of Turku FIN-20014, Finland
• Volume: 16, Issue: 3, page 569-575
• ISSN: 1246-7405

top

## Abstract

top
Let $𝒪$ be the maximal order of the cubic field generated by a zero $\epsilon$ of ${x}^{3}+\left(\ell -1\right){x}^{2}-\ell x-1$ for $\ell \in ℤ$, $\ell \ge 3$. We prove that $\epsilon ,\epsilon -1$ is a fundamental pair of units for $𝒪$, if $\left[𝒪:ℤ\left[\epsilon \right]\right]\le \ell /3.$

## How to cite

top

Ennola, Veikko. "Fundamental units in a family of cubic fields." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 569-575. <http://eudml.org/doc/249260>.

@article{Ennola2004,
abstract = {Let $\mathcal\{O\}$ be the maximal order of the cubic field generated by a zero $\varepsilon$ of $x^3+(\ell -1)x^2-\ell x-1$ for $\ell \in \mathbb\{Z\}$, $\ell \ge 3$. We prove that $\varepsilon ,\varepsilon -1$ is a fundamental pair of units for $\mathcal\{O\}$, if $[\mathcal\{O\}:\mathbb\{Z\}[\varepsilon ]]\le \ell /3.$},
affiliation = {Department of Mathematics University of Turku FIN-20014, Finland},
author = {Ennola, Veikko},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {cubic field; fundamental unit; maximal order; non-abelian field; Maple computation},
language = {eng},
number = {3},
pages = {569-575},
publisher = {Université Bordeaux 1},
title = {Fundamental units in a family of cubic fields},
url = {http://eudml.org/doc/249260},
volume = {16},
year = {2004},
}

TY - JOUR
AU - Ennola, Veikko
TI - Fundamental units in a family of cubic fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 569
EP - 575
AB - Let $\mathcal{O}$ be the maximal order of the cubic field generated by a zero $\varepsilon$ of $x^3+(\ell -1)x^2-\ell x-1$ for $\ell \in \mathbb{Z}$, $\ell \ge 3$. We prove that $\varepsilon ,\varepsilon -1$ is a fundamental pair of units for $\mathcal{O}$, if $[\mathcal{O}:\mathbb{Z}[\varepsilon ]]\le \ell /3.$
LA - eng
KW - cubic field; fundamental unit; maximal order; non-abelian field; Maple computation
UR - http://eudml.org/doc/249260
ER -

## References

top
1. B. N. Delone, D. K. Faddeev, The Theory of Irrationalities of the Third Degree. Trudy Mat. Inst. Steklov, vol. 11 (1940); English transl., Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R. I., Second printing 1978. Zbl0133.30202MR4269
2. V. Ennola, Cubic number fields with exceptional units. Computational Number Theory (A. Pethö et al., eds.), de Gruyter, Berlin, 1991, pp. 103–128. Zbl0732.11054MR1151859
3. H. G. Grundman, Systems of fundamental units in cubic orders. J. Number Theory 50 (1995), 119–127. Zbl0828.11061MR1310739
4. M. Mignotte, N. Tzanakis, On a family of cubics. J. Number Theory 39 (1991), 41–49, Corrigendum and addendum, 41 (1992), 128. Zbl0763.11011MR1123167
5. E. Thomas, Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math. 310 (1979), 33–55. Zbl0427.12005MR546663

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.