Modularity of -adic Galois representations via -adic approximations
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 1, page 179-185
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- F. Diamond, R. Taylor, Lifting modular mod representations. Duke Math. J. 74 no. 2 (1994), 253–269. Zbl0809.11025MR1272977
- C. Khare, On isomorphisms between deformation rings and Hecke rings. To appear in Inventiones mathematicae, preprint available at http://www.math.utah.edu/~shekhar/papers.html Zbl1042.11031MR2004460
- C. Khare, Limits of residually irreducible -adic Galois representations. Proc. Amer. Math. Soc. 131 (2003), 1999–2006. Zbl1150.11437MR1963742
- C. Khare, R. Ramakrishna, Finiteness of Selmer groups and deformation rings. To appear in Inventiones mathematicae, preprint available at http://www.math.utah.edu/~shekhar/papers.html Zbl1104.11026MR2004459
- K. Ribet, Report on mod representations of . In Motives, Proc. Sympos. Pure Math. 55, part 2 (1994), 639–676. Zbl0822.11034MR1265566
- R. Ramakrishna, Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur. Annals of Math. 156 (2002), 115–154. Zbl1076.11035MR1935843
- R. Taylor, On icosahedral Artin representations II. To appear in American J. of Math. Zbl1031.11031MR1981033
- R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), 553–572. Zbl0823.11030MR1333036
- A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. 141 (1995), 443–551. Zbl0823.11029MR1333035