A monogenic Hasse-Arf theorem
James Borger[1]
- [1] The University of Chicago Department of Mathematics 5734 University Avenue Chicago, Illinois 60637-1546, USA
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 2, page 373-375
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBorger, James. "A monogenic Hasse-Arf theorem." Journal de Théorie des Nombres de Bordeaux 16.2 (2004): 373-375. <http://eudml.org/doc/249263>.
@article{Borger2004,
abstract = {I extend the Hasse–Arf theorem from residually separable extensions of complete discrete valuation rings to monogenic extensions.},
affiliation = {The University of Chicago Department of Mathematics 5734 University Avenue Chicago, Illinois 60637-1546, USA},
author = {Borger, James},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Henselian discrete valuation ring; Artin conductor; purely inseparable extension; monogenic extensions},
language = {eng},
number = {2},
pages = {373-375},
publisher = {Université Bordeaux 1},
title = {A monogenic Hasse-Arf theorem},
url = {http://eudml.org/doc/249263},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Borger, James
TI - A monogenic Hasse-Arf theorem
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 2
SP - 373
EP - 375
AB - I extend the Hasse–Arf theorem from residually separable extensions of complete discrete valuation rings to monogenic extensions.
LA - eng
KW - Henselian discrete valuation ring; Artin conductor; purely inseparable extension; monogenic extensions
UR - http://eudml.org/doc/249263
ER -
References
top- K. Kato, Swan conductors for characters of degree one in the imperfect residue field case. Algebraic -theory and algebraic number theory, ed. M. Stein and R. K. Dennis, Contemp. Math. 83, Amer. Math. Soc., Providence, 1989, 101–131. Zbl0716.12006MR991978
- S. Matsuda, On the Swan conductor in positive characteristic. Amer. J. Math. 119 (1997), no. 4, 705–739. Zbl0928.14017MR1465067
- J-P. Serre, Corps locaux. Deuxième édition. Hermann, Paris, 1968. Zbl0137.02601MR354618
- B. de Smit, The Different and Differentials of Local Fields with Imperfect Residue Fields. Proc. Edin. Math. Soc. 40 (1997), 353–365. Zbl0874.11075MR1454030
- L. Spriano. Thesis, Université de Bordeaux, 1999.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.