A monogenic Hasse-Arf theorem

James Borger[1]

  • [1] The University of Chicago Department of Mathematics 5734 University Avenue Chicago, Illinois 60637-1546, USA

Journal de Théorie des Nombres de Bordeaux (2004)

  • Volume: 16, Issue: 2, page 373-375
  • ISSN: 1246-7405

Abstract

top
I extend the Hasse–Arf theorem from residually separable extensions of complete discrete valuation rings to monogenic extensions.

How to cite

top

Borger, James. "A monogenic Hasse-Arf theorem." Journal de Théorie des Nombres de Bordeaux 16.2 (2004): 373-375. <http://eudml.org/doc/249263>.

@article{Borger2004,
abstract = {I extend the Hasse–Arf theorem from residually separable extensions of complete discrete valuation rings to monogenic extensions.},
affiliation = {The University of Chicago Department of Mathematics 5734 University Avenue Chicago, Illinois 60637-1546, USA},
author = {Borger, James},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Henselian discrete valuation ring; Artin conductor; purely inseparable extension; monogenic extensions},
language = {eng},
number = {2},
pages = {373-375},
publisher = {Université Bordeaux 1},
title = {A monogenic Hasse-Arf theorem},
url = {http://eudml.org/doc/249263},
volume = {16},
year = {2004},
}

TY - JOUR
AU - Borger, James
TI - A monogenic Hasse-Arf theorem
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 2
SP - 373
EP - 375
AB - I extend the Hasse–Arf theorem from residually separable extensions of complete discrete valuation rings to monogenic extensions.
LA - eng
KW - Henselian discrete valuation ring; Artin conductor; purely inseparable extension; monogenic extensions
UR - http://eudml.org/doc/249263
ER -

References

top
  1. K. Kato, Swan conductors for characters of degree one in the imperfect residue field case. Algebraic K -theory and algebraic number theory, ed. M. Stein and R. K. Dennis, Contemp. Math. 83, Amer. Math. Soc., Providence, 1989, 101–131. Zbl0716.12006MR991978
  2. S. Matsuda, On the Swan conductor in positive characteristic. Amer. J. Math. 119 (1997), no. 4, 705–739. Zbl0928.14017MR1465067
  3. J-P. Serre, Corps locaux. Deuxième édition. Hermann, Paris, 1968. Zbl0137.02601MR354618
  4. B. de Smit, The Different and Differentials of Local Fields with Imperfect Residue Fields. Proc. Edin. Math. Soc. 40 (1997), 353–365. Zbl0874.11075MR1454030
  5. L. Spriano. Thesis, Université de Bordeaux, 1999. 

NotesEmbed ?

top

You must be logged in to post comments.