A monogenic Hasse-Arf theorem
James Borger[1]
- [1] The University of Chicago Department of Mathematics 5734 University Avenue Chicago, Illinois 60637-1546, USA
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 2, page 373-375
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- K. Kato, Swan conductors for characters of degree one in the imperfect residue field case. Algebraic -theory and algebraic number theory, ed. M. Stein and R. K. Dennis, Contemp. Math. 83, Amer. Math. Soc., Providence, 1989, 101–131. Zbl0716.12006MR991978
- S. Matsuda, On the Swan conductor in positive characteristic. Amer. J. Math. 119 (1997), no. 4, 705–739. Zbl0928.14017MR1465067
- J-P. Serre, Corps locaux. Deuxième édition. Hermann, Paris, 1968. Zbl0137.02601MR354618
- B. de Smit, The Different and Differentials of Local Fields with Imperfect Residue Fields. Proc. Edin. Math. Soc. 40 (1997), 353–365. Zbl0874.11075MR1454030
- L. Spriano. Thesis, Université de Bordeaux, 1999.