A monogenic Hasse-Arf theorem
I extend the Hasse–Arf theorem from residually separable extensions of complete discrete valuation rings to monogenic extensions.
I extend the Hasse–Arf theorem from residually separable extensions of complete discrete valuation rings to monogenic extensions.
Dans [Swe], Sweedler a caractérisé les extensions purement inséparables d’exposant fini qui sont produit tensoriel d’extensions simples. En vue d’étendre ce résultat aux extensions d’exposants non bornés, L. Kime dans [Kim] propose les extensions comme généralisation d’extensions simples. Dans ce travail, on propose d’autres généralisations naturelles. Ceci nous a permis de décrire explicitement toutes les extensions purement inséparables lorsque le degré d’imperfection de est . Dans [Dev2]...
Let K be a purely inseparable extension of a field k of characteristic p ≠ 0. Suppose that is finite. We recall that K/k is lq-modular if K is modular over a finite extension of k. Moreover, there exists a smallest extension m/k (resp. M/K) such that K/m (resp. M/k) is lq-modular. Our main result states the existence of a greatest lq-modular and relatively perfect subextension of K/k. Other results can be summarized in the following: 1. The product of lq-modular extensions over k is lq-modular...