An Arakelov theoretic proof of the equality of conductor and discriminant

Sinan Ünver[1]

  • [1] Department of Mathematics University of Chicago 5734 S. University Ave. Chicago IL 60637, USA

Journal de Théorie des Nombres de Bordeaux (2004)

  • Volume: 16, Issue: 2, page 423-427
  • ISSN: 1246-7405

Abstract

top
We give an Arakelov theoretic proof of the equality of conductor and discriminant.

How to cite

top

Ünver, Sinan. "An Arakelov theoretic proof of the equality of conductor and discriminant." Journal de Théorie des Nombres de Bordeaux 16.2 (2004): 423-427. <http://eudml.org/doc/249267>.

@article{Ünver2004,
abstract = {We give an Arakelov theoretic proof of the equality of conductor and discriminant.},
affiliation = {Department of Mathematics University of Chicago 5734 S. University Ave. Chicago IL 60637, USA},
author = {Ünver, Sinan},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Arakelov geometry; conductor and discriminant; arithmetic Noether's formula},
language = {eng},
number = {2},
pages = {423-427},
publisher = {Université Bordeaux 1},
title = {An Arakelov theoretic proof of the equality of conductor and discriminant},
url = {http://eudml.org/doc/249267},
volume = {16},
year = {2004},
}

TY - JOUR
AU - Ünver, Sinan
TI - An Arakelov theoretic proof of the equality of conductor and discriminant
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 2
SP - 423
EP - 427
AB - We give an Arakelov theoretic proof of the equality of conductor and discriminant.
LA - eng
KW - Arakelov geometry; conductor and discriminant; arithmetic Noether's formula
UR - http://eudml.org/doc/249267
ER -

References

top
  1. S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves. Proc. of Sympos. Pure Math. 46 (1987) AMS, 421–450. Zbl0654.14004MR927991
  2. T. Chinburg, G. Pappas, M.J. Taylor, -constants and Arakelov Euler characteristics. Preprint, (1999). Zbl1097.14501
  3. P. Deligne, Le déterminant de la cohomologie. Contemp. Math. 67 (1987), 93–177. Zbl0629.14008MR902592
  4. G. Faltings, Calculus on arithmetic surfaces. Ann. Math. 119 (1984), 387–424. Zbl0559.14005MR740897
  5. W. Fulton, Intersection theory. Springer-Verlag, Berlin, 1984. Zbl0541.14005MR732620
  6. H. Gillet, C. Soulé, An arithmetic Riemann-Roch theorem. Invent. Math. 110 (1992), 473–543. Zbl0777.14008MR1189489
  7. L. Moret-Bailly, La formule de Noether pour les surfaces arithmétiques. Invent. Math. 98 (1989), 499–509. Zbl0727.14014MR1022303
  8. D. Mumford, Stability of projective varieties. Einseign. Math. 23 (1977), 39–100. Zbl0363.14003MR450272
  9. T. Saito, Conductor, discriminant, and the Noether formula of arithmetic surfaces. Duke Math. J. 57 (1988), 151–173. Zbl0657.14017MR952229

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.