An Arakelov theoretic proof of the equality of conductor and discriminant
Sinan Ünver[1]
- [1] Department of Mathematics University of Chicago 5734 S. University Ave. Chicago IL 60637, USA
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 2, page 423-427
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topÜnver, Sinan. "An Arakelov theoretic proof of the equality of conductor and discriminant." Journal de Théorie des Nombres de Bordeaux 16.2 (2004): 423-427. <http://eudml.org/doc/249267>.
@article{Ünver2004,
abstract = {We give an Arakelov theoretic proof of the equality of conductor and discriminant.},
affiliation = {Department of Mathematics University of Chicago 5734 S. University Ave. Chicago IL 60637, USA},
author = {Ünver, Sinan},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Arakelov geometry; conductor and discriminant; arithmetic Noether's formula},
language = {eng},
number = {2},
pages = {423-427},
publisher = {Université Bordeaux 1},
title = {An Arakelov theoretic proof of the equality of conductor and discriminant},
url = {http://eudml.org/doc/249267},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Ünver, Sinan
TI - An Arakelov theoretic proof of the equality of conductor and discriminant
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 2
SP - 423
EP - 427
AB - We give an Arakelov theoretic proof of the equality of conductor and discriminant.
LA - eng
KW - Arakelov geometry; conductor and discriminant; arithmetic Noether's formula
UR - http://eudml.org/doc/249267
ER -
References
top- S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves. Proc. of Sympos. Pure Math. 46 (1987) AMS, 421–450. Zbl0654.14004MR927991
- T. Chinburg, G. Pappas, M.J. Taylor, -constants and Arakelov Euler characteristics. Preprint, (1999). Zbl1097.14501
- P. Deligne, Le déterminant de la cohomologie. Contemp. Math. 67 (1987), 93–177. Zbl0629.14008MR902592
- G. Faltings, Calculus on arithmetic surfaces. Ann. Math. 119 (1984), 387–424. Zbl0559.14005MR740897
- W. Fulton, Intersection theory. Springer-Verlag, Berlin, 1984. Zbl0541.14005MR732620
- H. Gillet, C. Soulé, An arithmetic Riemann-Roch theorem. Invent. Math. 110 (1992), 473–543. Zbl0777.14008MR1189489
- L. Moret-Bailly, La formule de Noether pour les surfaces arithmétiques. Invent. Math. 98 (1989), 499–509. Zbl0727.14014MR1022303
- D. Mumford, Stability of projective varieties. Einseign. Math. 23 (1977), 39–100. Zbl0363.14003MR450272
- T. Saito, Conductor, discriminant, and the Noether formula of arithmetic surfaces. Duke Math. J. 57 (1988), 151–173. Zbl0657.14017MR952229
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.