A fixed point formula for varieties over finite fields.
This is the second of a series of papers dealing with an analog in Arakelov geometry of the holomorphic Lefschetz fixed point formula. We use the main result of the first paper to prove a residue formula "à la Bott" for arithmetic characteristic classes living on arithmetic varieties acted upon by a diagonalisable torus; recent results of Bismut- Goette on the equivariant (Ray-Singer) analytic torsion play a key role in the proof.
Given a smooth proper dg algebra , a perfect dg -module and an endomorphism of , we define the Hochschild class of the pair with values in the Hochschild homology of the algebra . Our main result is a Riemann-Roch type formula involving the convolution of two such Hochschild classes.
We give an Arakelov theoretic proof of the equality of conductor and discriminant.
We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.
We develop a formalism of direct images for metrized vector bundles in the context of the non-archimedean Arakelov theory introduced in our joint work with S. Bloch. We prove a Riemann-Roch-Grothendieck theorem for this direct image.