The cuspidal torsion packet on hyperelliptic Fermat quotients
David Grant[1]; Delphy Shaulis[1]
- [1] Department of Mathematics University of Colorado at Boulder Boulder, CO 80309-0395 USA
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 3, page 577-585
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGrant, David, and Shaulis, Delphy. "The cuspidal torsion packet on hyperelliptic Fermat quotients." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 577-585. <http://eudml.org/doc/249268>.
@article{Grant2004,
abstract = {Let $\ell \ge 7$ be a prime, $C$ be the non-singular projective curve defined over $\mathbb\{Q\}$ by the affine model $y(1-y)=x^\ell $, $\infty $ the point of $C$ at infinity on this model, $J$ the Jacobian of $C$, and $\phi : C\rightarrow J$ the albanese embedding with $\infty $ as base point. Let $\overline\{\mathbb\{Q\}\}$ be an algebraic closure of $\mathbb\{Q\}$. Taking care of a case not covered in [12], we show that $\phi (C)\cap J_\{\operatorname\{tors\}\}(\overline\{\mathbb\{Q\}\})$ consists only of the image under $\phi $ of the Weierstrass points of $C$ and the points $(x,y)=(0,0)$ and $(0,1)$, where $J_\{\operatorname\{tors\}\}$ denotes the torsion points of $J$.},
affiliation = {Department of Mathematics University of Colorado at Boulder Boulder, CO 80309-0395 USA; Department of Mathematics University of Colorado at Boulder Boulder, CO 80309-0395 USA},
author = {Grant, David, Shaulis, Delphy},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {torsion point; cuspidal torsion packet; Fermat quotient curve; Jacobian; hyperelliptic curve},
language = {eng},
number = {3},
pages = {577-585},
publisher = {Université Bordeaux 1},
title = {The cuspidal torsion packet on hyperelliptic Fermat quotients},
url = {http://eudml.org/doc/249268},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Grant, David
AU - Shaulis, Delphy
TI - The cuspidal torsion packet on hyperelliptic Fermat quotients
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 577
EP - 585
AB - Let $\ell \ge 7$ be a prime, $C$ be the non-singular projective curve defined over $\mathbb{Q}$ by the affine model $y(1-y)=x^\ell $, $\infty $ the point of $C$ at infinity on this model, $J$ the Jacobian of $C$, and $\phi : C\rightarrow J$ the albanese embedding with $\infty $ as base point. Let $\overline{\mathbb{Q}}$ be an algebraic closure of $\mathbb{Q}$. Taking care of a case not covered in [12], we show that $\phi (C)\cap J_{\operatorname{tors}}(\overline{\mathbb{Q}})$ consists only of the image under $\phi $ of the Weierstrass points of $C$ and the points $(x,y)=(0,0)$ and $(0,1)$, where $J_{\operatorname{tors}}$ denotes the torsion points of $J$.
LA - eng
KW - torsion point; cuspidal torsion packet; Fermat quotient curve; Jacobian; hyperelliptic curve
UR - http://eudml.org/doc/249268
ER -
References
top- G. Anderson, Torsion points on Jacobians of quotients of Fermat curves and -adic soliton theory. Invent. Math 118, (1994), 475–492. Zbl0838.14020MR1296355
- M. Baker, Torsion points on modular curves. Invent. Math 140, (2000), 487–509. Zbl0972.11057MR1760749
- M. Baker, B. Poonen, Torsion packets on curves. Compositio Math 127, (2001), 109–116. Zbl0987.14020MR1832989
- M. Baker, K. Ribet, Galois theory and torsion points on curves. Journal de Théorie des nombres de Bordeaux 15, (2003), 11–32. Zbl1065.11045MR2018998
- J. Boxall, D. Grant, Examples of torsion points on genus 2 curves. Trans. Amer. Math. Soc 352, (2000), 4533–4555. Zbl1007.11038MR1621721
- J. Boxall, D. Grant, Singular torsion on elliptic curves. Mathematical Research Letters 10, (2003), 847–866. Zbl1130.11322MR2025060
- F. Calegari, Almost rational torsion points on semistable elliptic curves. IMRN no. 10, (2001), 487–503. Zbl1002.14004MR1832537
- J. Coates, A. Wiles, On the conjecture of Birch and Swinnerton-Dyer. Invent. Math 39, (1977), 223–251. Zbl0359.14009MR463176
- R. F. Coleman, Torsion points on Fermat curves. Compositio Math 58, (1986), 191–208. Zbl0604.14019MR844409
- R. F. Coleman , Torsion points on abelian étale coverings of . Trans. AMS 311, (1989), 185–208. Zbl0692.14021MR974774
- R. F. Coleman, W. McCallum, Stable reduction of Fermat curves and Jacobi sum Hecke characters J. Reine Angew. Math 385, (1988), 41–101. Zbl0654.12003MR931215
- R. F. Coleman, A. Tamagawa, P. Tzermias, The cuspidal torsion packet on the Fermat curve. J. Reine Angew. Math 496, (1998), 73–81. Zbl0931.11024MR1605810
- D. Grant, Torsion on theta divisors of hyperelliptic Fermat jacobians. Compositio Math. 140, (2004), 1432–1438. Zbl1077.11045MR2098396
- R. Greenberg, On the Jacobian variety of some algebraic curves. Compositio Math 42, (1981), 345–359. Zbl0475.14026MR607375
- R. Gupta, Ramification in the Coates-Wiles tower. Invent. Math 81, (1985), 59–69. Zbl0601.12011MR796191
- M. Kurihara, Some remarks on conjectures about cyclotomic fields and -groups of . Composition Math 81, (1992), 223–236. Zbl0747.11055MR1145807
- S. Lang, Division points on curves. Ann. Mat. Pura. Appl 70, (1965), 229-234. Zbl0151.27401MR190146
- S. Lang, Complex Multiplication. Springer-Verlag, New York, 1983. Zbl0536.14029MR713612
- K. Ribet, M. Kim, Torsion points on modular curves and Galois theory. Notes of a talk by K. Ribet in the Distinguished Lecture Series, Southwestern Center for Arithmetic Algebraic Geometry, (May 1999).
- D. Shaulis, Torsion points on the Jacobian of a hyperelliptic rational image of a Fermat curve. Thesis, University of Colorado at Boulder, 1998.
- B. Simon, Torsion points on a theta divisor in the Jacobian of a Fermat quotient. Thesis, University of Colorado at Boulder, 2003.
- A. Tamagawa, Ramification of torsion points on curves with ordinary semistable Jacobian varieties. Duke Math. J 106, (2001), 281–319. Zbl1010.14007MR1813433
- P. Tzermias, The Manin-Mumford conjecture: a brief survey. Bull. London Math. Soc. 32, (2000), 641–652. Zbl1073.14525MR1781574
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.