The cuspidal torsion packet on hyperelliptic Fermat quotients

David Grant[1]; Delphy Shaulis[1]

  • [1] Department of Mathematics University of Colorado at Boulder Boulder, CO 80309-0395 USA

Journal de Théorie des Nombres de Bordeaux (2004)

  • Volume: 16, Issue: 3, page 577-585
  • ISSN: 1246-7405

Abstract

top
Let 7 be a prime, C be the non-singular projective curve defined over by the affine model y ( 1 - y ) = x , the point of C at infinity on this model, J the Jacobian of C , and φ : C J the albanese embedding with as base point. Let ¯ be an algebraic closure of . Taking care of a case not covered in [12], we show that φ ( C ) J tors ( ¯ ) consists only of the image under φ of the Weierstrass points of C and the points ( x , y ) = ( 0 , 0 ) and ( 0 , 1 ) , where J tors denotes the torsion points of J .

How to cite

top

Grant, David, and Shaulis, Delphy. "The cuspidal torsion packet on hyperelliptic Fermat quotients." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 577-585. <http://eudml.org/doc/249268>.

@article{Grant2004,
abstract = {Let $\ell \ge 7$ be a prime, $C$ be the non-singular projective curve defined over $\mathbb\{Q\}$ by the affine model $y(1-y)=x^\ell $, $\infty $ the point of $C$ at infinity on this model, $J$ the Jacobian of $C$, and $\phi : C\rightarrow J$ the albanese embedding with $\infty $ as base point. Let $\overline\{\mathbb\{Q\}\}$ be an algebraic closure of $\mathbb\{Q\}$. Taking care of a case not covered in [12], we show that $\phi (C)\cap J_\{\operatorname\{tors\}\}(\overline\{\mathbb\{Q\}\})$ consists only of the image under $\phi $ of the Weierstrass points of $C$ and the points $(x,y)=(0,0)$ and $(0,1)$, where $J_\{\operatorname\{tors\}\}$ denotes the torsion points of $J$.},
affiliation = {Department of Mathematics University of Colorado at Boulder Boulder, CO 80309-0395 USA; Department of Mathematics University of Colorado at Boulder Boulder, CO 80309-0395 USA},
author = {Grant, David, Shaulis, Delphy},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {torsion point; cuspidal torsion packet; Fermat quotient curve; Jacobian; hyperelliptic curve},
language = {eng},
number = {3},
pages = {577-585},
publisher = {Université Bordeaux 1},
title = {The cuspidal torsion packet on hyperelliptic Fermat quotients},
url = {http://eudml.org/doc/249268},
volume = {16},
year = {2004},
}

TY - JOUR
AU - Grant, David
AU - Shaulis, Delphy
TI - The cuspidal torsion packet on hyperelliptic Fermat quotients
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 577
EP - 585
AB - Let $\ell \ge 7$ be a prime, $C$ be the non-singular projective curve defined over $\mathbb{Q}$ by the affine model $y(1-y)=x^\ell $, $\infty $ the point of $C$ at infinity on this model, $J$ the Jacobian of $C$, and $\phi : C\rightarrow J$ the albanese embedding with $\infty $ as base point. Let $\overline{\mathbb{Q}}$ be an algebraic closure of $\mathbb{Q}$. Taking care of a case not covered in [12], we show that $\phi (C)\cap J_{\operatorname{tors}}(\overline{\mathbb{Q}})$ consists only of the image under $\phi $ of the Weierstrass points of $C$ and the points $(x,y)=(0,0)$ and $(0,1)$, where $J_{\operatorname{tors}}$ denotes the torsion points of $J$.
LA - eng
KW - torsion point; cuspidal torsion packet; Fermat quotient curve; Jacobian; hyperelliptic curve
UR - http://eudml.org/doc/249268
ER -

References

top
  1. G. Anderson, Torsion points on Jacobians of quotients of Fermat curves and p -adic soliton theory. Invent. Math 118, (1994), 475–492. Zbl0838.14020MR1296355
  2. M. Baker, Torsion points on modular curves. Invent. Math 140, (2000), 487–509. Zbl0972.11057MR1760749
  3. M. Baker, B. Poonen, Torsion packets on curves. Compositio Math 127, (2001), 109–116. Zbl0987.14020MR1832989
  4. M. Baker, K. Ribet, Galois theory and torsion points on curves. Journal de Théorie des nombres de Bordeaux 15, (2003), 11–32. Zbl1065.11045MR2018998
  5. J. Boxall, D. Grant, Examples of torsion points on genus 2 curves. Trans. Amer. Math. Soc 352, (2000), 4533–4555. Zbl1007.11038MR1621721
  6. J. Boxall, D. Grant, Singular torsion on elliptic curves. Mathematical Research Letters 10, (2003), 847–866. Zbl1130.11322MR2025060
  7. F. Calegari, Almost rational torsion points on semistable elliptic curves. IMRN no. 10, (2001), 487–503. Zbl1002.14004MR1832537
  8. J. Coates, A. Wiles, On the conjecture of Birch and Swinnerton-Dyer. Invent. Math 39, (1977), 223–251. Zbl0359.14009MR463176
  9. R. F. Coleman, Torsion points on Fermat curves. Compositio Math 58, (1986), 191–208. Zbl0604.14019MR844409
  10. R. F. Coleman , Torsion points on abelian étale coverings of 1 - { 0 , 1 , } . Trans. AMS 311, (1989), 185–208. Zbl0692.14021MR974774
  11. R. F. Coleman, W. McCallum, Stable reduction of Fermat curves and Jacobi sum Hecke characters J. Reine Angew. Math 385, (1988), 41–101. Zbl0654.12003MR931215
  12. R. F. Coleman, A. Tamagawa, P. Tzermias, The cuspidal torsion packet on the Fermat curve. J. Reine Angew. Math 496, (1998), 73–81. Zbl0931.11024MR1605810
  13. D. Grant, Torsion on theta divisors of hyperelliptic Fermat jacobians. Compositio Math. 140, (2004), 1432–1438. Zbl1077.11045MR2098396
  14. R. Greenberg, On the Jacobian variety of some algebraic curves. Compositio Math 42, (1981), 345–359. Zbl0475.14026MR607375
  15. R. Gupta, Ramification in the Coates-Wiles tower. Invent. Math 81, (1985), 59–69. Zbl0601.12011MR796191
  16. M. Kurihara, Some remarks on conjectures about cyclotomic fields and K -groups of . Composition Math 81, (1992), 223–236. Zbl0747.11055MR1145807
  17. S. Lang, Division points on curves. Ann. Mat. Pura. Appl 70, (1965), 229-234. Zbl0151.27401MR190146
  18. S. Lang, Complex Multiplication. Springer-Verlag, New York, 1983. Zbl0536.14029MR713612
  19. K. Ribet, M. Kim, Torsion points on modular curves and Galois theory. Notes of a talk by K. Ribet in the Distinguished Lecture Series, Southwestern Center for Arithmetic Algebraic Geometry, (May 1999). 
  20. D. Shaulis, Torsion points on the Jacobian of a hyperelliptic rational image of a Fermat curve. Thesis, University of Colorado at Boulder, 1998. 
  21. B. Simon, Torsion points on a theta divisor in the Jacobian of a Fermat quotient. Thesis, University of Colorado at Boulder, 2003. 
  22. A. Tamagawa, Ramification of torsion points on curves with ordinary semistable Jacobian varieties. Duke Math. J 106, (2001), 281–319. Zbl1010.14007MR1813433
  23. P. Tzermias, The Manin-Mumford conjecture: a brief survey. Bull. London Math. Soc. 32, (2000), 641–652. Zbl1073.14525MR1781574

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.