Some remarks on conjectures about cyclotomic fields and K -groups of 𝐙

Masato Kurihara

Compositio Mathematica (1992)

  • Volume: 81, Issue: 2, page 223-236
  • ISSN: 0010-437X

How to cite


Kurihara, Masato. "Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf {Z}$." Compositio Mathematica 81.2 (1992): 223-236. <>.

author = {Kurihara, Masato},
journal = {Compositio Mathematica},
keywords = {Kummer-Vandiver conjecture; Quillen -theory; Euler systems},
language = {eng},
number = {2},
pages = {223-236},
publisher = {Kluwer Academic Publishers},
title = {Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf \{Z\}$},
url = {},
volume = {81},
year = {1992},

AU - Kurihara, Masato
TI - Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf {Z}$
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 81
IS - 2
SP - 223
EP - 236
LA - eng
KW - Kummer-Vandiver conjecture; Quillen -theory; Euler systems
UR -
ER -


  1. [1] Beilinson, A.A.: Polylogarithm and cyclotomic elements, preprint (1990). 
  2. [2] Bloch, S. and Kato, K.: L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift Vol I, Progress in Math. Vol. 86, Birkhäuser (1990), 333-400. Zbl0768.14001MR1086888
  3. [3] Coleman, R.F.: Anderson-Ihara theory: Gauss sums and circular units, in Algebraic Number Theory (in honor of K. Iwasawa), Adv. Studies in Pure Math.17 (1989), 55-72. Zbl0733.14012MR1097609
  4. [4] Deligne, P.: Le groupe fondamental de la droite projective moins trois points, in Galois groups over Q, Publ. MSRI, no. 16, Springer-Verlag (1989), 79-298. Zbl0742.14022MR1012168
  5. [5] Dwyer, W.G. and Friedlander, E.M.: Algebraic and etale K-theory, Trans, AMS292(1) (1985), 247-280. Zbl0581.14012MR805962
  6. [6] Greenberg, R.: On the Jacobian variety of some algebraic curves, Comp. Math.42 (1981), 345-359. Zbl0475.14026MR607375
  7. [7] Ihara, Y.: Profinite braid groups, Galois representations and complex multiplications, Ann. Math.123 (1986), 43-106. Zbl0595.12003MR825839
  8. [8] Ihara, Y., Kaneko, M., and Yukinari, A.: On some properties of the universal power series for Jacobi sums, Adv. Studies in Pure Math.12 (1987), 65-86. Zbl0642.12012MR948237
  9. [9] Iwasawa, K.: A class number formula for cyclotomic fields, Ann. Math.76 (1962), 171-179. Zbl0125.02003MR154862
  10. [10] Kolyvagin, V.A.: Euler systems, to appear in The Grothendieck Festschrift Vol. II. Zbl0742.14017MR1106906
  11. [11] Lee, R. and Szczarba, R.H.: On the torsion in K4(Z) and K5(Z) with Addendum by C. Soulé, Duke Math.45 (1978), 101-132. Zbl0385.18009
  12. [12] Lichtenbaum, S.:Values of zeta functions, étale cohomology, and algebraic K-theory, in Lect. Notes in Math.342, Springer-Verlag (1973), 489-501. Zbl0284.12005MR406981
  13. [13] Quillen, D.: Letter from Quillen to Milnor on Im(π iO→πsi→KiZ), July 26, 1972, in Lecture Notes in Math.551, Springer-Verlag (1976), 182-188. Zbl0351.55003
  14. [14] Rubin, K.: The main conjecture: Appendix to Cyclotomic Fields (Combined Second Edition) by S. Lang, Graduate Texts in Math. Vol. 121, Springer-Verlag (1990). Zbl0704.11038MR1029028
  15. [15] Soulé, C.: K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math.55 (1979), 251-295. Zbl0437.12008MR553999
  16. [16] Soulé, C.: On higher p-adic regulators, in Lecture Notes in Math.854, Springer-Verlag (1981), 372-401. Zbl0488.12008MR618313
  17. [17] Soulé, C.: Éléments cyclotomiques en K-thérie, Astérisque147-148 (1987), 225-257. Zbl0632.12014MR891430
  18. [18] Suslin, A.A.: Stability in Algebraic K-theory, in Lect. Notes in Math.966, Springer-Verlag (1982), 304-333. Zbl0498.18008MR689381
  19. [19] Tate, J.: Relations between K2 and Galois cohomology, Invent. Math.36 (1976), 257-274. Zbl0359.12011MR429837
  20. [20] Vandiver, H.S.: A property of cyclotomic integers and its relation to Fermat's last theorem, Ann. Math.26 (1924-25), 217-232. Zbl51.0136.01JFM51.0136.01
  21. [21] Washington, L.C.: Introduction to Cyclotomic Fields, Graduate Texts in Math. Vol. 83, Springer-Verlag (1980). Zbl0484.12001MR1421575
  22. [22] Wiles, A.: The Iwasawa conjecture for totally real fields, Ann. Math.131 (1990), 493-540. Zbl0719.11071MR1053488

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.