Ramification groups and Artin conductors of radical extensions of
- [1] Universita’ degli studi di Roma Tor Vergata Dipartimento dimatematica via della ricerca scientifica 1 00133 Roma, Italy
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 3, page 779-816
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topViviani, Filippo. "Ramification groups and Artin conductors of radical extensions of $\mathbb{Q}$." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 779-816. <http://eudml.org/doc/249272>.
@article{Viviani2004,
abstract = {We study the ramification properties of the extensions $\mathbb\{Q\}(\zeta _m,\@root m \of \{a\})/\mathbb\{Q\}$ under the hypothesis that $m$ is odd and if $p\mid m$ than either $p\nmid v_p(a)$ or $p^\{v_p(m)\}\mid v_p(a)$ ($v_p(a)$ and $v_p(m)$ are the exponents with which $p$ divides $a$ and $m$). In particular we determine the higher ramification groups of the completed extensions and the Artin conductors of the characters of their Galois group. As an application, we give formulas for the $p$-adique valuation of the discriminant of the studied global extensions with $m=p^r$.},
affiliation = {Universita’ degli studi di Roma Tor Vergata Dipartimento dimatematica via della ricerca scientifica 1 00133 Roma, Italy},
author = {Viviani, Filippo},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {ramification groups; Artin conductors},
language = {eng},
number = {3},
pages = {779-816},
publisher = {Université Bordeaux 1},
title = {Ramification groups and Artin conductors of radical extensions of $\mathbb\{Q\}$},
url = {http://eudml.org/doc/249272},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Viviani, Filippo
TI - Ramification groups and Artin conductors of radical extensions of $\mathbb{Q}$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 779
EP - 816
AB - We study the ramification properties of the extensions $\mathbb{Q}(\zeta _m,\@root m \of {a})/\mathbb{Q}$ under the hypothesis that $m$ is odd and if $p\mid m$ than either $p\nmid v_p(a)$ or $p^{v_p(m)}\mid v_p(a)$ ($v_p(a)$ and $v_p(m)$ are the exponents with which $p$ divides $a$ and $m$). In particular we determine the higher ramification groups of the completed extensions and the Artin conductors of the characters of their Galois group. As an application, we give formulas for the $p$-adique valuation of the discriminant of the studied global extensions with $m=p^r$.
LA - eng
KW - ramification groups; Artin conductors
UR - http://eudml.org/doc/249272
ER -
References
top- M. Acosta, W. Y. Velez, The lattice of subfields of radicals extensions. Journal of Number theory 15 (1982), 388–405. Zbl0493.12027MR680540
- J.W.S. Cassels, A. Fröhlich, Algebraic number theory. Academic press: London, 1967. Zbl0153.07403MR215665
- H. Hasse, Number theory. Springer-Verlag: New York, 1980. Zbl0423.12002MR562104
- E.T. Jacobson, W. Y. Velez, The Galois group of a radical extension of the rationals. Manuscripta Math. 67 no. 3 (1990), 271–284. Zbl0717.12002MR1046989
- K. Komatsu, An integral bases of the algebraic number field . J. Reine Angew. Math. 288 (1976), 152–153. Zbl0335.12016MR422201
- S. Lang, Algebra, revised third edition. Springer-Verlag: New York, 2002. Zbl0984.00001MR1878556
- H. B. Mann, W. Y. Velez, Prime ideal decomposition in . Monatsh. Math. 81 (1976), 131–139. Zbl0324.12003MR399043
- B. Mora, W. Y. Velez, Some results on radical extensions. J. of Algebra 162 (1993), 295–301. Zbl0798.12005MR1254775
- A. Schinzel, Abelian binomials, power residues and exponential congruences. Acta Arith. 32 (1977), 245–274. Zbl0409.12029MR429819
- J.P. Serre, Local fields. Springer-Verlag: New York, 1979. Zbl0423.12016MR554237
- W. Y. Velez, A generalization of Schinzel’s theorem on radical extensions of fields and an application. Acta Arith. 51 no. 2 (1988), 119–130. Zbl0662.12025MR975106
- W.Y. Velez, On normal binomials. Acta Arith. 36 (1980), 113–124. Zbl0487.12013MR581910
- W. Y. Velez, Prime ideal decomposition in . Pacific Journal of mathematics 75 no. 2 (1978), 589–600. Zbl0344.12002MR506215
- W. Y. Velez, Several results on radical extensions. Arch. Math. (Basel) 45 no. 4 (1985), 342–349. Zbl0589.12018MR810252
- W. Y. Velez, The factorization of in and the genus field of . Tokyo J. Math. 11 no. 1 (1988), 1–19. Zbl0664.12003MR947943
- J. Westlund, On the fundamental number of the algebraic number field . Trans. Amer. Math. Soc. 11 (1910), 388–392. Zbl41.0245.02MR1500870
- J. Wójcik, Contributions to the theory of Kummer extensions. Acta Arith. 40 (1982), 155–174. Zbl0491.12002MR649116
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.