Ramification groups and Artin conductors of radical extensions of

Filippo Viviani[1]

  • [1] Universita’ degli studi di Roma Tor Vergata Dipartimento dimatematica via della ricerca scientifica 1 00133 Roma, Italy

Journal de Théorie des Nombres de Bordeaux (2004)

  • Volume: 16, Issue: 3, page 779-816
  • ISSN: 1246-7405

Abstract

top
We study the ramification properties of the extensions ( ζ m , a m ) / under the hypothesis that m is odd and if p m than either p v p ( a ) or p v p ( m ) v p ( a ) ( v p ( a ) and v p ( m ) are the exponents with which p divides a and m ). In particular we determine the higher ramification groups of the completed extensions and the Artin conductors of the characters of their Galois group. As an application, we give formulas for the p -adique valuation of the discriminant of the studied global extensions with m = p r .

How to cite

top

Viviani, Filippo. "Ramification groups and Artin conductors of radical extensions of $\mathbb{Q}$." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 779-816. <http://eudml.org/doc/249272>.

@article{Viviani2004,
abstract = {We study the ramification properties of the extensions $\mathbb\{Q\}(\zeta _m,\@root m \of \{a\})/\mathbb\{Q\}$ under the hypothesis that $m$ is odd and if $p\mid m$ than either $p\nmid v_p(a)$ or $p^\{v_p(m)\}\mid v_p(a)$ ($v_p(a)$ and $v_p(m)$ are the exponents with which $p$ divides $a$ and $m$). In particular we determine the higher ramification groups of the completed extensions and the Artin conductors of the characters of their Galois group. As an application, we give formulas for the $p$-adique valuation of the discriminant of the studied global extensions with $m=p^r$.},
affiliation = {Universita’ degli studi di Roma Tor Vergata Dipartimento dimatematica via della ricerca scientifica 1 00133 Roma, Italy},
author = {Viviani, Filippo},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {ramification groups; Artin conductors},
language = {eng},
number = {3},
pages = {779-816},
publisher = {Université Bordeaux 1},
title = {Ramification groups and Artin conductors of radical extensions of $\mathbb\{Q\}$},
url = {http://eudml.org/doc/249272},
volume = {16},
year = {2004},
}

TY - JOUR
AU - Viviani, Filippo
TI - Ramification groups and Artin conductors of radical extensions of $\mathbb{Q}$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 779
EP - 816
AB - We study the ramification properties of the extensions $\mathbb{Q}(\zeta _m,\@root m \of {a})/\mathbb{Q}$ under the hypothesis that $m$ is odd and if $p\mid m$ than either $p\nmid v_p(a)$ or $p^{v_p(m)}\mid v_p(a)$ ($v_p(a)$ and $v_p(m)$ are the exponents with which $p$ divides $a$ and $m$). In particular we determine the higher ramification groups of the completed extensions and the Artin conductors of the characters of their Galois group. As an application, we give formulas for the $p$-adique valuation of the discriminant of the studied global extensions with $m=p^r$.
LA - eng
KW - ramification groups; Artin conductors
UR - http://eudml.org/doc/249272
ER -

References

top
  1. M. Acosta, W. Y. Velez, The lattice of subfields of radicals extensions. Journal of Number theory 15 (1982), 388–405. Zbl0493.12027MR680540
  2. J.W.S. Cassels, A. Fröhlich, Algebraic number theory. Academic press: London, 1967. Zbl0153.07403MR215665
  3. H. Hasse, Number theory. Springer-Verlag: New York, 1980. Zbl0423.12002MR562104
  4. E.T. Jacobson, W. Y. Velez, The Galois group of a radical extension of the rationals. Manuscripta Math. 67 no. 3 (1990), 271–284. Zbl0717.12002MR1046989
  5. K. Komatsu, An integral bases of the algebraic number field ( a l , 1 l ) . J. Reine Angew. Math. 288 (1976), 152–153. Zbl0335.12016MR422201
  6. S. Lang, Algebra, revised third edition. Springer-Verlag: New York, 2002. Zbl0984.00001MR1878556
  7. H. B. Mann, W. Y. Velez, Prime ideal decomposition in F ( μ m ) . Monatsh. Math. 81 (1976), 131–139. Zbl0324.12003MR399043
  8. B. Mora, W. Y. Velez, Some results on radical extensions. J. of Algebra 162 (1993), 295–301. Zbl0798.12005MR1254775
  9. A. Schinzel, Abelian binomials, power residues and exponential congruences. Acta Arith. 32 (1977), 245–274. Zbl0409.12029MR429819
  10. J.P. Serre, Local fields. Springer-Verlag: New York, 1979. Zbl0423.12016MR554237
  11. W. Y. Velez, A generalization of Schinzel’s theorem on radical extensions of fields and an application. Acta Arith. 51 no. 2 (1988), 119–130. Zbl0662.12025MR975106
  12. W.Y. Velez, On normal binomials. Acta Arith. 36 (1980), 113–124. Zbl0487.12013MR581910
  13. W. Y. Velez, Prime ideal decomposition in F ( μ p ) . Pacific Journal of mathematics 75 no. 2 (1978), 589–600. Zbl0344.12002MR506215
  14. W. Y. Velez, Several results on radical extensions. Arch. Math. (Basel) 45 no. 4 (1985), 342–349. Zbl0589.12018MR810252
  15. W. Y. Velez, The factorization of p in ( a p k ) and the genus field of ( a n ) . Tokyo J. Math. 11 no. 1 (1988), 1–19. Zbl0664.12003MR947943
  16. J. Westlund, On the fundamental number of the algebraic number field K ( m p ) . Trans. Amer. Math. Soc. 11 (1910), 388–392. Zbl41.0245.02MR1500870
  17. J. Wójcik, Contributions to the theory of Kummer extensions. Acta Arith. 40 (1982), 155–174. Zbl0491.12002MR649116

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.