Two complete and minimal systems associated with the zeros of the Riemann zeta function

Jean-François Burnol[1]

  • [1] Université Lille 1 UFR de Mathématiques Cité scientifique M2 F-59655 Villeneuve d’Ascq, France

Journal de Théorie des Nombres de Bordeaux (2004)

  • Volume: 16, Issue: 1, page 65-94
  • ISSN: 1246-7405

Abstract

top
We link together three themes which had remained separated so far: the Hilbert space properties of the Riemann zeros, the “dual Poisson formula” of Duffin-Weinberger (also named by us co-Poisson formula), and the “Sonine spaces” of entire functions defined and studied by de Branges. We determine in which (extended) Sonine spaces the zeros define a complete, or minimal, system. We obtain some general results dealing with the distribution of the zeros of the de-Branges-Sonine entire functions. We draw attention onto some distributions associated with the Fourier transform and which we introduced in our earlier works.

How to cite

top

Burnol, Jean-François. "Two complete and minimal systems associated with the zeros of the Riemann zeta function." Journal de Théorie des Nombres de Bordeaux 16.1 (2004): 65-94. <http://eudml.org/doc/249278>.

@article{Burnol2004,
abstract = {We link together three themes which had remained separated so far: the Hilbert space properties of the Riemann zeros, the “dual Poisson formula” of Duffin-Weinberger (also named by us co-Poisson formula), and the “Sonine spaces” of entire functions defined and studied by de Branges. We determine in which (extended) Sonine spaces the zeros define a complete, or minimal, system. We obtain some general results dealing with the distribution of the zeros of the de-Branges-Sonine entire functions. We draw attention onto some distributions associated with the Fourier transform and which we introduced in our earlier works.},
affiliation = {Université Lille 1 UFR de Mathématiques Cité scientifique M2 F-59655 Villeneuve d’Ascq, France},
author = {Burnol, Jean-François},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Riemann zeta function; Hilbert spaces; Fourier Transform},
language = {eng},
number = {1},
pages = {65-94},
publisher = {Université Bordeaux 1},
title = {Two complete and minimal systems associated with the zeros of the Riemann zeta function},
url = {http://eudml.org/doc/249278},
volume = {16},
year = {2004},
}

TY - JOUR
AU - Burnol, Jean-François
TI - Two complete and minimal systems associated with the zeros of the Riemann zeta function
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 1
SP - 65
EP - 94
AB - We link together three themes which had remained separated so far: the Hilbert space properties of the Riemann zeros, the “dual Poisson formula” of Duffin-Weinberger (also named by us co-Poisson formula), and the “Sonine spaces” of entire functions defined and studied by de Branges. We determine in which (extended) Sonine spaces the zeros define a complete, or minimal, system. We obtain some general results dealing with the distribution of the zeros of the de-Branges-Sonine entire functions. We draw attention onto some distributions associated with the Fourier transform and which we introduced in our earlier works.
LA - eng
KW - Riemann zeta function; Hilbert spaces; Fourier Transform
UR - http://eudml.org/doc/249278
ER -

References

top
  1. R. P. Boas, Sums representing Fourier transforms, Proc. Am. Math. Soc. 3 (1952), 444–447. Zbl0047.10401MR48626
  2. L. de Branges, Self-reciprocal functions, J. Math. Anal. Appl. 9 (1964) 433–457. Zbl0134.10504MR213826
  3. L. de Branges, Hilbert spaces of entire functions, Prentice Hall Inc., Englewood Cliffs, 1968. Zbl0157.43301MR229011
  4. L. de Branges, The convergence of Euler products, J. Funct. Anal. 107 (1992), no. 1, 122–210. Zbl0768.46009MR1165869
  5. L. de Branges, A conjecture which implies the Riemann hypothesis, J. Funct. Anal. 121 (1994), no. 1, 117–184. Zbl0802.46039MR1270590
  6. J.-F. Burnol, Sur certains espaces de Hilbert de fonctions entières, liés à la transformation de Fourier et aux fonctions L de Dirichlet et de Riemann, C. R. Acad. Sci. Paris, Ser. I 333 (2001), 201–206. Zbl1057.11039MR1851625
  7. J.-F. Burnol, On Fourier and Zeta(s), 50 p., Habilitationsschrift (2001-2002), Forum Mathematicum, to appear (2004). Zbl1077.11058MR2096473
  8. J.-F. Burnol, Sur les “espaces de Sonine” associés par de Branges à la transformation de Fourier, C. R. Acad. Sci. Paris, Ser. I 335 (2002), 689–692. Zbl1032.46054MR1941650
  9. J.-F. Burnol, Des équations de Dirac et de Schrödinger pour la transformation de Fourier, C. R. Acad. Sci. Paris, Ser. I 336 (2003), 919–924. Zbl1083.34063MR1994595
  10. R. J. Duffin, Representation of Fourier integrals as sums I, Bull. Am. Math. Soc. 51 (1945), 447–455. Zbl0060.25606MR12153
  11. R. J. Duffin, Representation of Fourier integrals as sums II, Proc. Am. Math. Soc. 1 (1950), 250–255. Zbl0037.19802MR34465
  12. R. J. Duffin, Representation of Fourier integrals as sums III, Proc. Am. Math. Soc. 8 (1957), 272–277. Zbl0078.09804MR84629
  13. R. J. Duffin, H. F. Weinberger, Dualizing the Poisson summation formula, Proc. Natl. Acad. Sci. USA 88 (1991), 7348–7350. Zbl0771.42001MR1119734
  14. R. J. Duffin, H. F. Weinberger, On dualizing a multivariable Poisson summation formula, Journ. of Fourier Anal. and Appl. 3 (5) (1997), 487–497. Zbl0892.42002MR1491929
  15. H. Dym, H.P. McKean, Fourier series and integrals, Academic Press, 1972. Zbl0242.42001MR442564
  16. H. Dym, H.P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Probability and Mathematical Statistics, Vol. 31. Academic Press, New York-London, 1976. Zbl0327.60029MR448523
  17. M. L. Gorbachuk, V. I. Gorbachuk, M. G. Krein’s lectures on entire operators, Operator Theory: Advances and Applications, 97. Birkhäuser Verlag, Basel, 1997. Zbl0883.47008
  18. K. Hoffman, Banach spaces of analytic functions, Reprint of the 1962 original. Dover Publications, Inc., New York, 1988. Zbl0734.46033MR1102893
  19. M.G. Krein, Theory of entire functions of exponential type (in Russian), Izv. Akad. Nauk. SSSR, Ser. Mat. 11 (1947), No. 4, 309–326. Zbl0033.36501MR22252
  20. B.Y. Levin, Distribution of Zeros of Entire Functions, American Mathematical Society, Providence 1980. Transl. and rev. from the 1956 Russian and 1962 German editions. Zbl0152.06703MR589888
  21. R.E.A.C. Paley, N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc., Providence, Rhode Island, 1934. Zbl0011.01601MR1451142
  22. J. Rovnyak, V. Rovnyak, Sonine spaces of entire functions, J. Math. Anal. Appl., 27 (1969), 68–100. Zbl0159.17303MR243333
  23. N. Sonine, Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries, Math. Ann. 16 (1880), 1–80. MR1510013
  24. E. C. Titchmarsh, The Theory of the Riemann-Zeta Function, 2nd ed. Edited and with a preface by D. R. Heath-Brown. Clarendon Press, Oxford 1986. Zbl0601.10026MR882550
  25. H. F. Weinberger, Fourier transforms of Moebius series. Dissertation (1950), Carnegie-Mellon University, Pittsburgh. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.