Two complete and minimal systems associated with the zeros of the Riemann zeta function
- [1] Université Lille 1 UFR de Mathématiques Cité scientifique M2 F-59655 Villeneuve d’Ascq, France
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 1, page 65-94
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBurnol, Jean-François. "Two complete and minimal systems associated with the zeros of the Riemann zeta function." Journal de Théorie des Nombres de Bordeaux 16.1 (2004): 65-94. <http://eudml.org/doc/249278>.
@article{Burnol2004,
abstract = {We link together three themes which had remained separated so far: the Hilbert space properties of the Riemann zeros, the “dual Poisson formula” of Duffin-Weinberger (also named by us co-Poisson formula), and the “Sonine spaces” of entire functions defined and studied by de Branges. We determine in which (extended) Sonine spaces the zeros define a complete, or minimal, system. We obtain some general results dealing with the distribution of the zeros of the de-Branges-Sonine entire functions. We draw attention onto some distributions associated with the Fourier transform and which we introduced in our earlier works.},
affiliation = {Université Lille 1 UFR de Mathématiques Cité scientifique M2 F-59655 Villeneuve d’Ascq, France},
author = {Burnol, Jean-François},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Riemann zeta function; Hilbert spaces; Fourier Transform},
language = {eng},
number = {1},
pages = {65-94},
publisher = {Université Bordeaux 1},
title = {Two complete and minimal systems associated with the zeros of the Riemann zeta function},
url = {http://eudml.org/doc/249278},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Burnol, Jean-François
TI - Two complete and minimal systems associated with the zeros of the Riemann zeta function
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 1
SP - 65
EP - 94
AB - We link together three themes which had remained separated so far: the Hilbert space properties of the Riemann zeros, the “dual Poisson formula” of Duffin-Weinberger (also named by us co-Poisson formula), and the “Sonine spaces” of entire functions defined and studied by de Branges. We determine in which (extended) Sonine spaces the zeros define a complete, or minimal, system. We obtain some general results dealing with the distribution of the zeros of the de-Branges-Sonine entire functions. We draw attention onto some distributions associated with the Fourier transform and which we introduced in our earlier works.
LA - eng
KW - Riemann zeta function; Hilbert spaces; Fourier Transform
UR - http://eudml.org/doc/249278
ER -
References
top- R. P. Boas, Sums representing Fourier transforms, Proc. Am. Math. Soc. 3 (1952), 444–447. Zbl0047.10401MR48626
- L. de Branges, Self-reciprocal functions, J. Math. Anal. Appl. 9 (1964) 433–457. Zbl0134.10504MR213826
- L. de Branges, Hilbert spaces of entire functions, Prentice Hall Inc., Englewood Cliffs, 1968. Zbl0157.43301MR229011
- L. de Branges, The convergence of Euler products, J. Funct. Anal. 107 (1992), no. 1, 122–210. Zbl0768.46009MR1165869
- L. de Branges, A conjecture which implies the Riemann hypothesis, J. Funct. Anal. 121 (1994), no. 1, 117–184. Zbl0802.46039MR1270590
- J.-F. Burnol, Sur certains espaces de Hilbert de fonctions entières, liés à la transformation de Fourier et aux fonctions L de Dirichlet et de Riemann, C. R. Acad. Sci. Paris, Ser. I 333 (2001), 201–206. Zbl1057.11039MR1851625
- J.-F. Burnol, On Fourier and Zeta(s), 50 p., Habilitationsschrift (2001-2002), Forum Mathematicum, to appear (2004). Zbl1077.11058MR2096473
- J.-F. Burnol, Sur les “espaces de Sonine” associés par de Branges à la transformation de Fourier, C. R. Acad. Sci. Paris, Ser. I 335 (2002), 689–692. Zbl1032.46054MR1941650
- J.-F. Burnol, Des équations de Dirac et de Schrödinger pour la transformation de Fourier, C. R. Acad. Sci. Paris, Ser. I 336 (2003), 919–924. Zbl1083.34063MR1994595
- R. J. Duffin, Representation of Fourier integrals as sums I, Bull. Am. Math. Soc. 51 (1945), 447–455. Zbl0060.25606MR12153
- R. J. Duffin, Representation of Fourier integrals as sums II, Proc. Am. Math. Soc. 1 (1950), 250–255. Zbl0037.19802MR34465
- R. J. Duffin, Representation of Fourier integrals as sums III, Proc. Am. Math. Soc. 8 (1957), 272–277. Zbl0078.09804MR84629
- R. J. Duffin, H. F. Weinberger, Dualizing the Poisson summation formula, Proc. Natl. Acad. Sci. USA 88 (1991), 7348–7350. Zbl0771.42001MR1119734
- R. J. Duffin, H. F. Weinberger, On dualizing a multivariable Poisson summation formula, Journ. of Fourier Anal. and Appl. 3 (5) (1997), 487–497. Zbl0892.42002MR1491929
- H. Dym, H.P. McKean, Fourier series and integrals, Academic Press, 1972. Zbl0242.42001MR442564
- H. Dym, H.P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Probability and Mathematical Statistics, Vol. 31. Academic Press, New York-London, 1976. Zbl0327.60029MR448523
- M. L. Gorbachuk, V. I. Gorbachuk, M. G. Krein’s lectures on entire operators, Operator Theory: Advances and Applications, 97. Birkhäuser Verlag, Basel, 1997. Zbl0883.47008
- K. Hoffman, Banach spaces of analytic functions, Reprint of the 1962 original. Dover Publications, Inc., New York, 1988. Zbl0734.46033MR1102893
- M.G. Krein, Theory of entire functions of exponential type (in Russian), Izv. Akad. Nauk. SSSR, Ser. Mat. 11 (1947), No. 4, 309–326. Zbl0033.36501MR22252
- B.Y. Levin, Distribution of Zeros of Entire Functions, American Mathematical Society, Providence 1980. Transl. and rev. from the 1956 Russian and 1962 German editions. Zbl0152.06703MR589888
- R.E.A.C. Paley, N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc., Providence, Rhode Island, 1934. Zbl0011.01601MR1451142
- J. Rovnyak, V. Rovnyak, Sonine spaces of entire functions, J. Math. Anal. Appl., 27 (1969), 68–100. Zbl0159.17303MR243333
- N. Sonine, Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries, Math. Ann. 16 (1880), 1–80. MR1510013
- E. C. Titchmarsh, The Theory of the Riemann-Zeta Function, 2nd ed. Edited and with a preface by D. R. Heath-Brown. Clarendon Press, Oxford 1986. Zbl0601.10026MR882550
- H. F. Weinberger, Fourier transforms of Moebius series. Dissertation (1950), Carnegie-Mellon University, Pittsburgh.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.