Constructing elliptic curves over finite fields using double eta-quotients
Andreas Enge[1]; Reinhard Schertz[2]
- [1] INRIA Futurs & LIX (CNRS/UMR 7161) École polytechnique 91128 Palaiseau cedex, France
- [2] Institut für Mathematik Universität Augsburg 86135 Augsburg, Deutschland
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 3, page 555-568
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topEnge, Andreas, and Schertz, Reinhard. "Constructing elliptic curves over finite fields using double eta-quotients." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 555-568. <http://eudml.org/doc/249281>.
@article{Enge2004,
abstract = {We examine a class of modular functions for $\Gamma ^0 (N)$ whose values generate ring class fields of imaginary quadratic orders. This fact leads to a new algorithm for constructing elliptic curves with complex multiplication. The difficulties arising when the genus of $X_0 (N)$ is not zero are overcome by computing certain modular polynomials.Being a product of four $\eta $-functions, the proposed modular functions can be viewed as a natural generalisation of the functions examined by Weber and usually employed to construct CM-curves. Unlike the Weber functions, the values of the examined functions generate any ring class field of an imaginary quadratic order regardless of the congruences modulo powers of 2 and 3 satisfied by the discriminant.},
affiliation = {INRIA Futurs & LIX (CNRS/UMR 7161) École polytechnique 91128 Palaiseau cedex, France; Institut für Mathematik Universität Augsburg 86135 Augsburg, Deutschland},
author = {Enge, Andreas, Schertz, Reinhard},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Weber function; ring class field; modular function},
language = {eng},
number = {3},
pages = {555-568},
publisher = {Université Bordeaux 1},
title = {Constructing elliptic curves over finite fields using double eta-quotients},
url = {http://eudml.org/doc/249281},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Enge, Andreas
AU - Schertz, Reinhard
TI - Constructing elliptic curves over finite fields using double eta-quotients
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 555
EP - 568
AB - We examine a class of modular functions for $\Gamma ^0 (N)$ whose values generate ring class fields of imaginary quadratic orders. This fact leads to a new algorithm for constructing elliptic curves with complex multiplication. The difficulties arising when the genus of $X_0 (N)$ is not zero are overcome by computing certain modular polynomials.Being a product of four $\eta $-functions, the proposed modular functions can be viewed as a natural generalisation of the functions examined by Weber and usually employed to construct CM-curves. Unlike the Weber functions, the values of the examined functions generate any ring class field of an imaginary quadratic order regardless of the congruences modulo powers of 2 and 3 satisfied by the discriminant.
LA - eng
KW - Weber function; ring class field; modular function
UR - http://eudml.org/doc/249281
ER -
References
top- A. O. L. Atkin, F. Morain, Elliptic curves and primality proving. Mathematics of Computation, 61(203) (July 1993), 29–68. Zbl0792.11056MR1199989
- Z. I. Borevich, I. R. Shafarevich, Number Theory. Pure and Applied Mathematics, Academic Press, New York, 1966. Zbl0145.04902MR195803
- David A. Cox, Primes of the Form — Fermat, Class Field Theory, and Complex Multiplication. John Wiley & Sons, New York, 1989. Zbl0701.11001
- R. Dedekind, Erläuterungen zu den vorstehenden Fragmenten. In R. Dedekind and H. Weber, editors, Bernhard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nachlaß, pages 438–447. Teubner, Leipzig, 1876.
- Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abhandlungen aus dem mathematischen Seminar der hamburgischen Universität 14 (1941), 197–272. Zbl0025.02003MR5125
- Max Deuring, Die Klassenkörper der komplexen Multiplikation. In Enzyklop. d. math. Wissenschaften, volume I 2 Heft 10. Teubner, Stuttgart, 2 edition, 1958. Zbl0123.04001MR167481
- Andreas Enge, Elliptic Curves and Their Applications to Cryptography — An Introduction. Kluwer Academic Publishers, 1999. Zbl1335.11002
- Andreas Enge, François Morain, Comparing invariants for class fields of imaginary quadratic fields. In Claus Fieker and David R. Kohel, editors, Algorithmic Number Theory — ANTS-V, volume 2369 of Lecture Notes in Computer Science, pages 252–266, Berlin, 2002. Springer-Verlag. Zbl1058.11077
- Andreas Enge, François Morain, Further investigations of the generalised Weber functions. In preparation, 2005. Zbl1319.11039
- Andreas Enge, Reinhard Schertz, Modular curves of composite level. To appear in Acta Arithmetica, 2005. Zbl1158.11322MR2141046
- Andreas Enge, Paul Zimmermann, mpc — a library for multiprecision complex arithmetic with exact rounding. Version 0.4.3, available from http://www.lix.polytechnique.fr/Labo/Andreas.Enge/Software.html.
- Mireille Fouquet, François Morain, Isogeny volcanoes and the SEA algorithm. In Claus Fieker and David R. Kohel, editors, Algorithmic Number Theory — ANTS-V, volume 2369 of Lecture Notes in Computer Science, pages 276–291, Berlin, 2002. Springer-Verlag. Zbl1058.11041
- Shafi Goldwasser, Joe Kilian. Almost all primes can be quickly certified. In Proc. 18th Annual ACM Symp. on Theory of Computing, pages 316–329, 1986.
- Torbjörn Granlund et. al., gmp — GNU multiprecision library. Version 4.1.4, available from http://www.swox.com/gmp.
- Guillaume Hanrot, Vincent Lefèvre, Paul Zimmermann et. al., mpfr — a library for multiple-precision floating-point computations with exact rounding. Version 2.1.0, available from http://www.mpfr.org.
- Carl Gustav Jacob Jacobi, Fundamenta nova theoriae functionum ellipticarum. In Gesammelte Werke, pages 49–239. Chelsea, New York, 2 (1969) edition, 1829.
- Neal KoblitzElliptic curve cryptosystems. Mathematics of Computation 48(177) (January 1987), 203–209. Zbl0622.94015MR866109
- David KohelEndomorphism Rings of Elliptic Curves over Finite Fields. PhD thesis, University of California at Berkeley, 1996.
- Georg-Johann Lay, Horst G. Zimmer, Constructing elliptic curves with given group order over large finite fields. In Leonard M. Adleman and Ming-Deh Huang, editors, Algorithmic Number Theory, volume 877 of Lecture Notes in Computer Science, pages 250–263, Berlin, 1994. Springer-Verlag. Zbl0833.11024MR1322728
- H. W. Lenstra Jr., Factoring integers with elliptic curves. Annals of Mathematics 126 (1987), 649–673. Zbl0629.10006MR916721
- Victor S. Miller, Use of elliptic curves in cryptography. In Hugh C. Williams, editor, Advances in Cryptology — CRYPTO ’85, volume 218 of Lecture Notes in Computer Science, pages 417–426, Berlin, 1986. Springer-Verlag. Zbl0589.94005
- Morris Newman, Construction and application of a class of modular functions (II). Proceedings of the London Mathematical Society 3rd Series 9 (1959), 373–387. Zbl0178.43001MR107629
- Reinhard Schertz, Zur expliziten Berechnung von Ganzheitsbasen in Strahlklassenkörpern über einem imaginär-quadratischen Zahlkörper. Journal of Number Theory 34(1) (January 1990), 41–53. Zbl0701.11059MR1039766
- Reinhard Schertz, Weber’s class invariants revisited, Journal de Théorie des Nombres de Bordeaux 14(1) (2002), 325–343. Zbl1022.11056MR1926005
- Victor Shoup, ntl — a library for doing number theory. Version 5.3.2, available from http://www.shoup.net/ntl/.
- Joseph H. Silverman, The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics. Springer-Verlag, New York, 1986. Zbl0585.14026MR817210
- Heinrich Weber, Lehrbuch der Algebra, volume 3. Chelsea Publishing Company, New York, 3rd edition, 1908.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.