Weber's class invariants revisited

Reinhard Schertz

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 1, page 325-343
  • ISSN: 1246-7405

Abstract

top
Let K be a quadratic imaginary number field of discriminant d . For t let 𝔒 t denote the order of conductor t in K and j ( 𝔒 t ) its modular invariant which is known to generate the ring class field modulo t over K . The coefficients of the minimal equation of j ( 𝔒 t ) being quite large Weber considered in [We] the functions f , f 1 , f 2 , γ 2 , γ 3 defined below and thereby obtained simpler generators of the ring class fields. Later on the singular values of these functions played a crucial role in Heegner’s solution [He] of the class number one problem for quadratic imaginary number fields [He,Me2,St]. Actually these numbers are used in cryptography to find elliptic curves over finite fields with nice properties. It is the aim of this paper i) to enunciate some known results of [We,Bi,Me2,Sch1] cf. Theorem 1, 2 and 3, concerning singular values of the functions f , f 1 , f 2 , γ 2 , γ 3 , and ii) to give a short and easy proof of these results. That method also applies to other functions, such as those in the table preceding Theorem 4. The proofs of Theorems 1 to 4 are given at the end of our article. Our proofs rely on the reciprocity law of Shimura (cf. Theorem 5, and also Theorem 6 and 7), and on the knowledge of the 24 -th root of unity that acquires η = Δ 24 by unimodular substitution (cf. Proposition 2, and [Mel] p.162); they also give via Proposition 3 explicit formulas for the conjugates of the singular values (of the above functions), that are quite useful for numerical calculations. Examples of such calculations are to be found immediately before the references.

How to cite

top

Schertz, Reinhard. "Weber's class invariants revisited." Journal de théorie des nombres de Bordeaux 14.1 (2002): 325-343. <http://eudml.org/doc/248893>.

@article{Schertz2002,
abstract = {Let $K$ be a quadratic imaginary number field of discriminant $d$. For $t \in \mathbb \{N\}$ let $\mathfrak \{O\}_t$ denote the order of conductor $t$ in $K$ and $j(\mathfrak \{O\}_t)$ its modular invariant which is known to generate the ring class field modulo $t$ over $K$. The coefficients of the minimal equation of $j(\mathfrak \{O\}_t)$ being quite large Weber considered in [We] the functions $f,f_1, f_2, \gamma _2, \gamma _3$ defined below and thereby obtained simpler generators of the ring class fields. Later on the singular values of these functions played a crucial role in Heegner’s solution [He] of the class number one problem for quadratic imaginary number fields [He,Me2,St]. Actually these numbers are used in cryptography to find elliptic curves over finite fields with nice properties. It is the aim of this paper i) to enunciate some known results of [We,Bi,Me2,Sch1] cf. Theorem 1, 2 and 3, concerning singular values of the functions $f,f_1, f_2, \gamma _2, \gamma _3$, and ii) to give a short and easy proof of these results. That method also applies to other functions, such as those in the table preceding Theorem 4. The proofs of Theorems 1 to 4 are given at the end of our article. Our proofs rely on the reciprocity law of Shimura (cf. Theorem 5, and also Theorem 6 and 7), and on the knowledge of the $24$-th root of unity that acquires $\eta = \@root 24 \of \{\Delta \}$ by unimodular substitution (cf. Proposition 2, and [Mel] p.162); they also give via Proposition 3 explicit formulas for the conjugates of the singular values (of the above functions), that are quite useful for numerical calculations. Examples of such calculations are to be found immediately before the references.},
author = {Schertz, Reinhard},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {complex multiplication; ring class field; modular invariant; class invariant; Schläfli functions},
language = {eng},
number = {1},
pages = {325-343},
publisher = {Université Bordeaux I},
title = {Weber's class invariants revisited},
url = {http://eudml.org/doc/248893},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Schertz, Reinhard
TI - Weber's class invariants revisited
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 1
SP - 325
EP - 343
AB - Let $K$ be a quadratic imaginary number field of discriminant $d$. For $t \in \mathbb {N}$ let $\mathfrak {O}_t$ denote the order of conductor $t$ in $K$ and $j(\mathfrak {O}_t)$ its modular invariant which is known to generate the ring class field modulo $t$ over $K$. The coefficients of the minimal equation of $j(\mathfrak {O}_t)$ being quite large Weber considered in [We] the functions $f,f_1, f_2, \gamma _2, \gamma _3$ defined below and thereby obtained simpler generators of the ring class fields. Later on the singular values of these functions played a crucial role in Heegner’s solution [He] of the class number one problem for quadratic imaginary number fields [He,Me2,St]. Actually these numbers are used in cryptography to find elliptic curves over finite fields with nice properties. It is the aim of this paper i) to enunciate some known results of [We,Bi,Me2,Sch1] cf. Theorem 1, 2 and 3, concerning singular values of the functions $f,f_1, f_2, \gamma _2, \gamma _3$, and ii) to give a short and easy proof of these results. That method also applies to other functions, such as those in the table preceding Theorem 4. The proofs of Theorems 1 to 4 are given at the end of our article. Our proofs rely on the reciprocity law of Shimura (cf. Theorem 5, and also Theorem 6 and 7), and on the knowledge of the $24$-th root of unity that acquires $\eta = \@root 24 \of {\Delta }$ by unimodular substitution (cf. Proposition 2, and [Mel] p.162); they also give via Proposition 3 explicit formulas for the conjugates of the singular values (of the above functions), that are quite useful for numerical calculations. Examples of such calculations are to be found immediately before the references.
LA - eng
KW - complex multiplication; ring class field; modular invariant; class invariant; Schläfli functions
UR - http://eudml.org/doc/248893
ER -

References

top
  1. [Bi] B.J. Birch, Weber's Class Invariants. Mathematika16 (1969), 283-294. Zbl0226.12005MR262206
  2. [De] M. Deuring, Die Klassenkörper der komplexen Multiplikation. Enzykl. d. math. Wiss.I/2, 2.Auflage, Heft 10, Stuttgart, 1958. Zbl0123.04001MR167481
  3. [Ha-Vi] F. Hajir, F.R. Villegas, Explicit elliptic units, I. Duke Math. J.90 (1997), 495-521. Zbl0898.11025MR1480544
  4. [He] K. Heegner, Diophantische Analysis und Modulfunktionen. Math. Zeitschrift56 (1952), 227-253. Zbl0049.16202MR53135
  5. [La] S. Lang, Elliptic functions. Addison Wesley, 1973. Zbl0316.14001MR409362
  6. [Me1] C. Meyer, Über einige Anwendungen Dedekindscher Summen. J. Reine Angew. Math.198 (1957), 143-203. Zbl0079.10303MR104643
  7. [Me2] C. Meyer, Bemerkungen zum Satz von Heegner-Stark über die imaginär-quadratischen Zahlkörper mit der Klassenzahl Eins. J. Reine Angew. Math.242 (1970), 179-214. Zbl0218.12007MR266896
  8. [Mo] F. Morain, Modular Curves, Class Invariants and Applications, preprint. 
  9. [Sch1] R. Schertz, Die singulären Werte der Weberschen Funktionen f, f1, f2, γ2, γ3. J. Reine Angew. Math.286/287 (1976), 46-74. Zbl0335.12018
  10. [Sch2] R. Schertz, Zur Theorie der Ringklassenkörper über imaginär-quadratischen Zahlkörpern. J. Number Theory10 (1978), 70-82. Zbl0372.12013MR480431
  11. [Sch3] R. Schertz, Zur expliziten Berechnung von Ganzheitsbasen in Strahiklassenkörpern über einem imaginär-quadratischen Zahlkörper. J. Number Theory34 (1990), 41-53. Zbl0701.11059MR1039766
  12. [Sch4] R. Schertz, Construction of Ray Class Fields by Elliptic Units. J. Théor. Nombres Bordeaux9 (1997), 383-394. Zbl0902.11047MR1617405
  13. [Sh] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, 1971. Zbl0221.10029MR314766
  14. [St] H. Stark, On the "Gap" in a Theorem of Heegner. J. Number Theory1 (1969),16-27. Zbl0198.37702MR241384
  15. [We] H. Weber, Lehrbuch der Algebra, Bd 3, 2. Aufl. Braunschweig, 1908; Neudruck, New York, 1962. Zbl39.0227.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.