The Neumann problem for quasilinear differential equations
Tiziana Cardinali; Nikolaos S. Papageorgiou; Raffaella Servadei
Archivum Mathematicum (2004)
- Volume: 040, Issue: 4, page 321-333
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topCardinali, Tiziana, Papageorgiou, Nikolaos S., and Servadei, Raffaella. "The Neumann problem for quasilinear differential equations." Archivum Mathematicum 040.4 (2004): 321-333. <http://eudml.org/doc/249284>.
@article{Cardinali2004,
abstract = {In this note we prove the existence of extremal solutions of the quasilinear Neumann problem $-( \vert x^\{^\{\prime \}\}(t) \vert ^\{p-2\}x^\{^\{\prime \}\}(t))^\{^\{\prime \}\} = f(t,x(t),x ^\{^\{\prime \}\}(t))$, a.e. on $T$, $x^\{^\{\prime \}\}(0) = x^\{^\{\prime \}\}(b) =0$, $2\le p < \infty $ in the order interval $[\psi ,\varphi ]$, where $\psi $ and $\varphi $ are respectively a lower and an upper solution of the Neumann problem.},
author = {Cardinali, Tiziana, Papageorgiou, Nikolaos S., Servadei, Raffaella},
journal = {Archivum Mathematicum},
keywords = {upper solution; lower solution; order interval; truncation function; penalty function; pseudomonotone operator; coercive operator; Leray-Schauder principle; maximal solution; minimal solution; upper solution; lower solution; order interval; truncation function},
language = {eng},
number = {4},
pages = {321-333},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The Neumann problem for quasilinear differential equations},
url = {http://eudml.org/doc/249284},
volume = {040},
year = {2004},
}
TY - JOUR
AU - Cardinali, Tiziana
AU - Papageorgiou, Nikolaos S.
AU - Servadei, Raffaella
TI - The Neumann problem for quasilinear differential equations
JO - Archivum Mathematicum
PY - 2004
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 040
IS - 4
SP - 321
EP - 333
AB - In this note we prove the existence of extremal solutions of the quasilinear Neumann problem $-( \vert x^{^{\prime }}(t) \vert ^{p-2}x^{^{\prime }}(t))^{^{\prime }} = f(t,x(t),x ^{^{\prime }}(t))$, a.e. on $T$, $x^{^{\prime }}(0) = x^{^{\prime }}(b) =0$, $2\le p < \infty $ in the order interval $[\psi ,\varphi ]$, where $\psi $ and $\varphi $ are respectively a lower and an upper solution of the Neumann problem.
LA - eng
KW - upper solution; lower solution; order interval; truncation function; penalty function; pseudomonotone operator; coercive operator; Leray-Schauder principle; maximal solution; minimal solution; upper solution; lower solution; order interval; truncation function
UR - http://eudml.org/doc/249284
ER -
References
top- Boccardo L., Drábek P., Giachetti D., Kučera M., Generalization of Fredholm alternative for nonlinear differential operators, Nonlinear Anal. 10 (1986), 1083–1103. (1986) MR0857742
- Brézis H., Analyse functionelle: Théorie et applications, Masson, Paris 1983. (1983) MR0697382
- Del Pino M., Elgueta M., Manasevich R., A homotopic deformation along p of a Leray-Schauder degree result and existence for , J. Differential Equations 80 (1989), 1–13. (1989) MR1003248
- Drábek P., Solvability of boundary value problems with homogeneous ordinary differential operator, Rend. Istit. Mat. Univ. Trieste 18 (1986), 105–125. (1986) MR0928322
- Dunford N., Schwartz J. T., Linear operators. Part I: General theory, Interscience Publishers, New York 1958–1971. (1958) MR1009162
- Gao W., Wang J., A nonlinear second order periodic boundary value problem with Carathéodory functions, Ann. Polon. Math. LXVII. 3 (1995), 283–291. (1995) MR1356797
- Gilbarg D., Trudinger N., Elliptic partial differential equations of second order, Springer-Verlag, Berlin 1983. (1983) Zbl0562.35001MR0737190
- Dugundji J., Granas A., Fixed point theory, Vol. I, Monogr. Mat. PWN, Warsaw 1992. (1992)
- Guo Z., Boundary value problems of a class of quasilinear ordinary differential equations, Differential Integral Equations 6, No. 3 (1993), 705–719. (1993) Zbl0784.34018MR1202567
- Halidias N., Papageorgiou N. S., Existence of solutions for nonlinear parabolic problems, Arch. Math. (Brno) 35 (1999), 255–274. (1999) Zbl1046.35054MR1725842
- Hu S., Papageorgiou N. S., Handbook of multivalued analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands 1997. (1997) Zbl0887.47001MR1485775
- Marcus M., Mizel V. J., Absolute continuity on tracks and mapping of Sobolev spaces, Arch. Rational Mech. Anal. 45 (1972), 294–320. (1972) MR0338765
- O’Regan D., Some General existence principles and results for , SIAM J. Math. Anal. 24 No. 30 (1993), 648–668. (1993) MR1215430
- Pascali D., Sburlan S., Nonlinear mapping of monotone type, Editura Academiei, Bucuresti, Romania 1978. (1978) MR0531036
- Peressini A. L., Ordered topological vector spaces, Harper & Row, New York, Evanstone, London 1967. (1967) Zbl0169.14801MR0227731
- Wang J., Jiang D., A unified approach to some two-point, three-point and four-point boundary value problems with Carathéodory functions, J. Math. Anal. Appl. 211 (1997), 223–232. (1997) Zbl0880.34019MR1460168
- Zeidler E., Nonlinear functional analysis and its applications II, Springer-Verlag, New York 1990. (1990) Zbl0684.47029MR0816732
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.