The Neumann problem for quasilinear differential equations

Tiziana Cardinali; Nikolaos S. Papageorgiou; Raffaella Servadei

Archivum Mathematicum (2004)

  • Volume: 040, Issue: 4, page 321-333
  • ISSN: 0044-8753

Abstract

top
In this note we prove the existence of extremal solutions of the quasilinear Neumann problem - ( | x ' ( t ) | p - 2 x ' ( t ) ) ' = f ( t , x ( t ) , x ' ( t ) ) , a.e. on T , x ' ( 0 ) = x ' ( b ) = 0 , 2 p < in the order interval [ ψ , ϕ ] , where ψ and ϕ are respectively a lower and an upper solution of the Neumann problem.

How to cite

top

Cardinali, Tiziana, Papageorgiou, Nikolaos S., and Servadei, Raffaella. "The Neumann problem for quasilinear differential equations." Archivum Mathematicum 040.4 (2004): 321-333. <http://eudml.org/doc/249284>.

@article{Cardinali2004,
abstract = {In this note we prove the existence of extremal solutions of the quasilinear Neumann problem $-( \vert x^\{^\{\prime \}\}(t) \vert ^\{p-2\}x^\{^\{\prime \}\}(t))^\{^\{\prime \}\} = f(t,x(t),x ^\{^\{\prime \}\}(t))$, a.e. on $T$, $x^\{^\{\prime \}\}(0) = x^\{^\{\prime \}\}(b) =0$, $2\le p < \infty $ in the order interval $[\psi ,\varphi ]$, where $\psi $ and $\varphi $ are respectively a lower and an upper solution of the Neumann problem.},
author = {Cardinali, Tiziana, Papageorgiou, Nikolaos S., Servadei, Raffaella},
journal = {Archivum Mathematicum},
keywords = {upper solution; lower solution; order interval; truncation function; penalty function; pseudomonotone operator; coercive operator; Leray-Schauder principle; maximal solution; minimal solution; upper solution; lower solution; order interval; truncation function},
language = {eng},
number = {4},
pages = {321-333},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The Neumann problem for quasilinear differential equations},
url = {http://eudml.org/doc/249284},
volume = {040},
year = {2004},
}

TY - JOUR
AU - Cardinali, Tiziana
AU - Papageorgiou, Nikolaos S.
AU - Servadei, Raffaella
TI - The Neumann problem for quasilinear differential equations
JO - Archivum Mathematicum
PY - 2004
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 040
IS - 4
SP - 321
EP - 333
AB - In this note we prove the existence of extremal solutions of the quasilinear Neumann problem $-( \vert x^{^{\prime }}(t) \vert ^{p-2}x^{^{\prime }}(t))^{^{\prime }} = f(t,x(t),x ^{^{\prime }}(t))$, a.e. on $T$, $x^{^{\prime }}(0) = x^{^{\prime }}(b) =0$, $2\le p < \infty $ in the order interval $[\psi ,\varphi ]$, where $\psi $ and $\varphi $ are respectively a lower and an upper solution of the Neumann problem.
LA - eng
KW - upper solution; lower solution; order interval; truncation function; penalty function; pseudomonotone operator; coercive operator; Leray-Schauder principle; maximal solution; minimal solution; upper solution; lower solution; order interval; truncation function
UR - http://eudml.org/doc/249284
ER -

References

top
  1. Boccardo L., Drábek P., Giachetti D., Kučera M., Generalization of Fredholm alternative for nonlinear differential operators, Nonlinear Anal. 10 (1986), 1083–1103. (1986) MR0857742
  2. Brézis H., Analyse functionelle: Théorie et applications, Masson, Paris 1983. (1983) MR0697382
  3. Del Pino M., Elgueta M., Manasevich R., A homotopic deformation along p of a Leray-Schauder degree result and existence for ( | u ' ( t ) | p - 2 u ' ( t ) ) ' + f ( t , u ( t ) ) = 0 , u ( 0 ) = u ( T ) = 0 , p > 1 ) , J. Differential Equations 80 (1989), 1–13. (1989) MR1003248
  4. Drábek P., Solvability of boundary value problems with homogeneous ordinary differential operator, Rend. Istit. Mat. Univ. Trieste 18 (1986), 105–125. (1986) MR0928322
  5. Dunford N., Schwartz J. T., Linear operators. Part I: General theory, Interscience Publishers, New York 1958–1971. (1958) MR1009162
  6. Gao W., Wang J., A nonlinear second order periodic boundary value problem with Carathéodory functions, Ann. Polon. Math. LXVII. 3 (1995), 283–291. (1995) MR1356797
  7. Gilbarg D., Trudinger N., Elliptic partial differential equations of second order, Springer-Verlag, Berlin 1983. (1983) Zbl0562.35001MR0737190
  8. Dugundji J., Granas A., Fixed point theory, Vol. I, Monogr. Mat. PWN, Warsaw 1992. (1992) 
  9. Guo Z., Boundary value problems of a class of quasilinear ordinary differential equations, Differential Integral Equations 6, No. 3 (1993), 705–719. (1993) Zbl0784.34018MR1202567
  10. Halidias N., Papageorgiou N. S., Existence of solutions for nonlinear parabolic problems, Arch. Math. (Brno) 35 (1999), 255–274. (1999) Zbl1046.35054MR1725842
  11. Hu S., Papageorgiou N. S., Handbook of multivalued analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands 1997. (1997) Zbl0887.47001MR1485775
  12. Marcus M., Mizel V. J., Absolute continuity on tracks and mapping of Sobolev spaces, Arch. Rational Mech. Anal. 45 (1972), 294–320. (1972) MR0338765
  13. O’Regan D., Some General existence principles and results for ( φ ( y ' ) ) = q f ( t , y , y ' ) , 0 < t < 1 * , SIAM J. Math. Anal. 24 No. 30 (1993), 648–668. (1993) MR1215430
  14. Pascali D., Sburlan S., Nonlinear mapping of monotone type, Editura Academiei, Bucuresti, Romania 1978. (1978) MR0531036
  15. Peressini A. L., Ordered topological vector spaces, Harper & Row, New York, Evanstone, London 1967. (1967) Zbl0169.14801MR0227731
  16. Wang J., Jiang D., A unified approach to some two-point, three-point and four-point boundary value problems with Carathéodory functions, J. Math. Anal. Appl. 211 (1997), 223–232. (1997) Zbl0880.34019MR1460168
  17. Zeidler E., Nonlinear functional analysis and its applications II, Springer-Verlag, New York 1990. (1990) Zbl0684.47029MR0816732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.