Characterizations of Lambek-Carlitz type

Emil Daniel Schwab

Archivum Mathematicum (2004)

  • Volume: 040, Issue: 3, page 295-300
  • ISSN: 0044-8753

Abstract

top
We give Lambek-Carlitz type characterization for completely multiplicative reduced incidence functions in Möbius categories of full binomial type. The q -analog of the Lambek-Carlitz type characterization of exponential series is also established.

How to cite

top

Schwab, Emil Daniel. "Characterizations of Lambek-Carlitz type." Archivum Mathematicum 040.3 (2004): 295-300. <http://eudml.org/doc/249292>.

@article{Schwab2004,
abstract = {We give Lambek-Carlitz type characterization for completely multiplicative reduced incidence functions in Möbius categories of full binomial type. The $q$-analog of the Lambek-Carlitz type characterization of exponential series is also established.},
author = {Schwab, Emil Daniel},
journal = {Archivum Mathematicum},
keywords = {completely multiplicative functions; Möbius categories; exponential series; completely multiplicative functions; Möbius categories; exponential series},
language = {eng},
number = {3},
pages = {295-300},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Characterizations of Lambek-Carlitz type},
url = {http://eudml.org/doc/249292},
volume = {040},
year = {2004},
}

TY - JOUR
AU - Schwab, Emil Daniel
TI - Characterizations of Lambek-Carlitz type
JO - Archivum Mathematicum
PY - 2004
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 040
IS - 3
SP - 295
EP - 300
AB - We give Lambek-Carlitz type characterization for completely multiplicative reduced incidence functions in Möbius categories of full binomial type. The $q$-analog of the Lambek-Carlitz type characterization of exponential series is also established.
LA - eng
KW - completely multiplicative functions; Möbius categories; exponential series; completely multiplicative functions; Möbius categories; exponential series
UR - http://eudml.org/doc/249292
ER -

References

top
  1. Carlitz L., Problem E 2268, Amer. Math. Monthly 78 (1971), 1140. (1971) MR1536560
  2. Content M., Lemay F., Leroux P., Catégories de Möbius et fonctorialités: un cadre gènèral pour l’inversion de Möbius, J. Combin. Theory Ser. A 25 (1980), 169–190. (1980) Zbl0449.05004MR0563554
  3. Doubilet P., Rota G. C., Stanley R., On the foundations of combinatorial theory (VI): the idea of generating function, Proc. of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 267–318. Zbl0267.05002MR0403987
  4. Goldman J., Rota G. C., On the foundations of combinatorial theory IV: finite-vector spaces and Eulerian generating functions, Stud. Appl. Math. 49 (1970), 239–258. (1970) Zbl0216.01802MR0265181
  5. Lambek J., Arithmetical functions and distributivity, Amer. Math. Monthly 73 (1966), 969–973. (1966) Zbl0152.03105MR0202657
  6. Langford E., Distributivity over the Dirichlet product and complete multiplicative arithmetical functions, Amer. Math. Monthly 80 (1973), 411–414. (1973) MR0314789
  7. Leroux P., Les catégories de Möbius, Cahiers Topologie Géom. Différentielle Catég. 16 (1975), 280–282. (1975) 
  8. Leroux P., Catégories triangulaires. Exemples, applications, et problèmes, Rapport de recherche, Université du Québec a Montréal (1980), 72p. (1980) 
  9. Leroux P., Reduced matrices and q -log-concavity properties of q -Stirling numbers, J. Combin. Theory Ser. A (1990), 64–84. (1990) Zbl0704.05003MR1051779
  10. Schwab E. D., Multiplicative and additive elements in the ring of formal power series, PU.M.A. 4 (1993), 339–346. (1993) Zbl0806.13010MR1283983
  11. Schwab E. D., Complete multiplicativity and complete additivity in Möbius categories, Ital. J. Pure Appl. Math. 3 (1998), 37–48. (1998) Zbl0955.05007MR1769389
  12. Sivaramakrishnan R., Problem E 2196, Amer. Math. Monthly 77 (1970), 772. (1970) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.