Quantum Euler-Poisson systems: Existence of stationary states
Archivum Mathematicum (2004)
- Volume: 040, Issue: 4, page 435-456
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topJüngel, Ansgar, and Li, Hailiang. "Quantum Euler-Poisson systems: Existence of stationary states." Archivum Mathematicum 040.4 (2004): 435-456. <http://eudml.org/doc/249313>.
@article{Jüngel2004,
abstract = {A one-dimensional quantum Euler-Poisson system for semiconductors for the electron density and the electrostatic potential in bounded intervals is considered. The existence and uniqueness of strong solutions with positive electron density is shown for quite general (possibly non-convex or non-monotone) pressure-density functions under a “subsonic” condition, i.e. assuming sufficiently small current densities. The proof is based on a reformulation of the dispersive third-order equation for the electron density as a nonlinear elliptic fourth-order equation using an exponential transformation of variables.},
author = {Jüngel, Ansgar, Li, Hailiang},
journal = {Archivum Mathematicum},
keywords = {quantum hydrodynamics; existence and uniqueness of solutions; non-monotone pressure; semiconductors; quantum hydrodynamics; existence and uniqueness of solutions; non-monotone pressure; semiconductors},
language = {eng},
number = {4},
pages = {435-456},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Quantum Euler-Poisson systems: Existence of stationary states},
url = {http://eudml.org/doc/249313},
volume = {040},
year = {2004},
}
TY - JOUR
AU - Jüngel, Ansgar
AU - Li, Hailiang
TI - Quantum Euler-Poisson systems: Existence of stationary states
JO - Archivum Mathematicum
PY - 2004
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 040
IS - 4
SP - 435
EP - 456
AB - A one-dimensional quantum Euler-Poisson system for semiconductors for the electron density and the electrostatic potential in bounded intervals is considered. The existence and uniqueness of strong solutions with positive electron density is shown for quite general (possibly non-convex or non-monotone) pressure-density functions under a “subsonic” condition, i.e. assuming sufficiently small current densities. The proof is based on a reformulation of the dispersive third-order equation for the electron density as a nonlinear elliptic fourth-order equation using an exponential transformation of variables.
LA - eng
KW - quantum hydrodynamics; existence and uniqueness of solutions; non-monotone pressure; semiconductors; quantum hydrodynamics; existence and uniqueness of solutions; non-monotone pressure; semiconductors
UR - http://eudml.org/doc/249313
ER -
References
top- Brezzi F., Gasser I., Markowich P., Schmeiser C., Thermal equilibrium state of the quantum hydrodynamic model for semiconductor in one dimension, Appl. Math. Lett. 8 (1995), 47–52. (1995) MR1355150
- Chen G., Wang D., Convergence of shock schemes for the compressible Euler-Poisson equations, Comm. Math. Phys. 179 (1996), 333–364. (1996) MR1400743
- Courant R., Friedrichs K. O., Supersonic flow and shock waves, Springer-Verlag, New York 1976. (1976) MR0421279
- Degond P., Markowich P. A., On a one-dimensional steady-state hydrodynamic model, Appl. Math. Lett. 3 (1990), 25–29. (1990) MR1077867
- Degond P., Markowich P. A., A steady state potential flow model for semiconductors, Ann. Mat. Pura Appl. 165 (1993), 87–98. (1993) MR1271412
- Gamba I., Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductor, Comm. Partial Differential Equations 17 (1992), 553–577. (1992) MR1163436
- Gamba I., Jüngel A., Asymptotic limits in quantum trajectory models, Comm. Partial Differential Equations 27 (2002), 669–691. MR1900558
- Gamba I., Jüngel A., Positive solutions to singular second and third order differential equations for quantum fluids, Arch. Rational Mech. Anal. 156 (2001), 183–203. MR1816474
- Gamba I., Morawitz C., A viscous approximation for a 2D steady semiconductor or transonic gas dynamics flow: existence theorem for potential flow, Comm. Pure Appl. Math. 49 (1996), 999–1049. (1996) MR1404324
- Gardner C., Numerical simulation of a steady-state electron shock wave in a submicron semiconductor device, IEEE Trans. El. Dev. 38 (1991), 392–398. (1991)
- Gardner C., The quantum hydrodynamic model for semiconductors devices, SIAM J. Appl. Math. 54 (1994), 409–427. (1994) MR1265234
- Gasser I., Jüngel A., The quantum hydrodynamic model for semiconductors in thermal equilibrium, Z. Angew. Math. Phys. 48 (1997), 45–59. (1997) MR1439735
- Gasser I., Lin C.-K., Markowich P., A review of dispersive limits of the (non)linear Schrödinger-type equation, Taiwanese J. of Math. 4, (2000), 501–529. MR1799752
- Gasser I., Markowich P., Quantum hydrodynamics, Wigner transforms and the classical limit, Asymptot. Anal. 14 (1997), 97–116. (1997) Zbl0877.76087MR1451208
- Gasser I., Markowich P. A., Ringhofer C., Closure conditions for classical and quantum moment hierarchies in the small temperature limit, Transport Theory Statistic Phys. 25 (1996), 409–423. (1996) Zbl0871.76078MR1407543
- Gyi M. T., Jüngel A., A quantum regularization of the one-dimensional hydrodynamic model for semiconductors, Adv. Differential Equations 5 (2000), 773–800. Zbl1174.82348MR1750118
- Hsiao L., Yang T., Asymptotic of initial boundary value problems for hydrodynamic and drift diffusion models for semiconductors, J. Differential Equations 170 (2001), 472–493. MR1815191
- Jerome J., Analysis of charge transport: a mathematical study of semiconductor devices, Springer-Verlag, Heidelberg 1996. (1996) MR1437143
- Jüngel A., A steady-state potential flow Euler-Poisson system for charged quantum fluids, Comm. Math. Phys. 194 (1998), 463–479. (194) MR1627673
- Jüngel A., Quasi-hydrodynamic semiconductor equations, Progress in Nonlinear Differential Equations, Birkhäuser, Basel 2001. Zbl0969.35001MR1818867
- Jüngel A., Mariani M. C., Rial D., Local existence of solutions to the transient quantum hydrodynamic equations, Math. Models Methods Appl. Sci. 12 (2002), 485–495. Zbl1215.81031MR1899838
- Jüngel A., Li H.-L., Quantum Euler-Poisson systems: global existence and exponential decay, to appear in Quart. Appl. Math. 2005. Zbl1069.35012MR2086047
- Landau L. D., Lifshitz E. M., Quantum mechanics: non-relativistic theory, New York, Pergamon Press 1977. (1977) MR0400931
- Li H.-L., Markowich P. A., A review of hydrodynamical models for semiconductors: asymptotic behavior, Bol. Soc. Brasil. Mat. (N.S.) 32 (2001), 321-342. Zbl0996.82064MR1894562
- Loffredo M., Morato L., On the creation of quantum vortex lines in rotating HeII, Il nouvo cimento 108B (1993), 205–215. (1993)
- Madelung E., Quantentheorie in hydrodynamischer Form, Z. Phys. 40 (1927), 322. (1927)
- Marcati P., Natalini R., Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal. 129 (1995), 129–145. (1995) Zbl0829.35128MR1328473
- Markowich P., Ringhofer C., Schmeiser C., Semiconductor Equations, Springer, Wien 1990. (1990) Zbl0765.35001MR1063852
- Pacard F., Unterreiter A., A variational analysis of the thermal equilibrium state of charged quantum fluids, Comm. Partial Differential Equations 20 (1995), 885–900. (1995) Zbl0820.35112MR1326910
- Shu C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report No. 97-65, NASA Langley Research Center, Hampton, USA 1997. (1997) MR1728856
- Zhang B., Jerome W., On a steady-state quantum hydrodynamic model for semiconductors, Nonlinear Anal., Theory Methods Appl. 26 (1996), 845–856. (1996) Zbl0882.76105MR1362757
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.