Quantum Euler-Poisson systems: Existence of stationary states

Ansgar Jüngel; Hailiang Li

Archivum Mathematicum (2004)

  • Volume: 040, Issue: 4, page 435-456
  • ISSN: 0044-8753

Abstract

top
A one-dimensional quantum Euler-Poisson system for semiconductors for the electron density and the electrostatic potential in bounded intervals is considered. The existence and uniqueness of strong solutions with positive electron density is shown for quite general (possibly non-convex or non-monotone) pressure-density functions under a “subsonic” condition, i.e. assuming sufficiently small current densities. The proof is based on a reformulation of the dispersive third-order equation for the electron density as a nonlinear elliptic fourth-order equation using an exponential transformation of variables.

How to cite

top

Jüngel, Ansgar, and Li, Hailiang. "Quantum Euler-Poisson systems: Existence of stationary states." Archivum Mathematicum 040.4 (2004): 435-456. <http://eudml.org/doc/249313>.

@article{Jüngel2004,
abstract = {A one-dimensional quantum Euler-Poisson system for semiconductors for the electron density and the electrostatic potential in bounded intervals is considered. The existence and uniqueness of strong solutions with positive electron density is shown for quite general (possibly non-convex or non-monotone) pressure-density functions under a “subsonic” condition, i.e. assuming sufficiently small current densities. The proof is based on a reformulation of the dispersive third-order equation for the electron density as a nonlinear elliptic fourth-order equation using an exponential transformation of variables.},
author = {Jüngel, Ansgar, Li, Hailiang},
journal = {Archivum Mathematicum},
keywords = {quantum hydrodynamics; existence and uniqueness of solutions; non-monotone pressure; semiconductors; quantum hydrodynamics; existence and uniqueness of solutions; non-monotone pressure; semiconductors},
language = {eng},
number = {4},
pages = {435-456},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Quantum Euler-Poisson systems: Existence of stationary states},
url = {http://eudml.org/doc/249313},
volume = {040},
year = {2004},
}

TY - JOUR
AU - Jüngel, Ansgar
AU - Li, Hailiang
TI - Quantum Euler-Poisson systems: Existence of stationary states
JO - Archivum Mathematicum
PY - 2004
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 040
IS - 4
SP - 435
EP - 456
AB - A one-dimensional quantum Euler-Poisson system for semiconductors for the electron density and the electrostatic potential in bounded intervals is considered. The existence and uniqueness of strong solutions with positive electron density is shown for quite general (possibly non-convex or non-monotone) pressure-density functions under a “subsonic” condition, i.e. assuming sufficiently small current densities. The proof is based on a reformulation of the dispersive third-order equation for the electron density as a nonlinear elliptic fourth-order equation using an exponential transformation of variables.
LA - eng
KW - quantum hydrodynamics; existence and uniqueness of solutions; non-monotone pressure; semiconductors; quantum hydrodynamics; existence and uniqueness of solutions; non-monotone pressure; semiconductors
UR - http://eudml.org/doc/249313
ER -

References

top
  1. Brezzi F., Gasser I., Markowich P., Schmeiser C., Thermal equilibrium state of the quantum hydrodynamic model for semiconductor in one dimension, Appl. Math. Lett. 8 (1995), 47–52. (1995) MR1355150
  2. Chen G., Wang D., Convergence of shock schemes for the compressible Euler-Poisson equations, Comm. Math. Phys. 179 (1996), 333–364. (1996) MR1400743
  3. Courant R., Friedrichs K. O., Supersonic flow and shock waves, Springer-Verlag, New York 1976. (1976) MR0421279
  4. Degond P., Markowich P. A., On a one-dimensional steady-state hydrodynamic model, Appl. Math. Lett. 3 (1990), 25–29. (1990) MR1077867
  5. Degond P., Markowich P. A., A steady state potential flow model for semiconductors, Ann. Mat. Pura Appl. 165 (1993), 87–98. (1993) MR1271412
  6. Gamba I., Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductor, Comm. Partial Differential Equations 17 (1992), 553–577. (1992) MR1163436
  7. Gamba I., Jüngel A., Asymptotic limits in quantum trajectory models, Comm. Partial Differential Equations 27 (2002), 669–691. MR1900558
  8. Gamba I., Jüngel A., Positive solutions to singular second and third order differential equations for quantum fluids, Arch. Rational Mech. Anal. 156 (2001), 183–203. MR1816474
  9. Gamba I., Morawitz C., A viscous approximation for a 2D steady semiconductor or transonic gas dynamics flow: existence theorem for potential flow, Comm. Pure Appl. Math. 49 (1996), 999–1049. (1996) MR1404324
  10. Gardner C., Numerical simulation of a steady-state electron shock wave in a submicron semiconductor device, IEEE Trans. El. Dev. 38 (1991), 392–398. (1991) 
  11. Gardner C., The quantum hydrodynamic model for semiconductors devices, SIAM J. Appl. Math. 54 (1994), 409–427. (1994) MR1265234
  12. Gasser I., Jüngel A., The quantum hydrodynamic model for semiconductors in thermal equilibrium, Z. Angew. Math. Phys. 48 (1997), 45–59. (1997) MR1439735
  13. Gasser I., Lin C.-K., Markowich P., A review of dispersive limits of the (non)linear Schrödinger-type equation, Taiwanese J. of Math. 4, (2000), 501–529. MR1799752
  14. Gasser I., Markowich P., Quantum hydrodynamics, Wigner transforms and the classical limit, Asymptot. Anal. 14 (1997), 97–116. (1997) Zbl0877.76087MR1451208
  15. Gasser I., Markowich P. A., Ringhofer C., Closure conditions for classical and quantum moment hierarchies in the small temperature limit, Transport Theory Statistic Phys. 25 (1996), 409–423. (1996) Zbl0871.76078MR1407543
  16. Gyi M. T., Jüngel A., A quantum regularization of the one-dimensional hydrodynamic model for semiconductors, Adv. Differential Equations 5 (2000), 773–800. Zbl1174.82348MR1750118
  17. Hsiao L., Yang T., Asymptotic of initial boundary value problems for hydrodynamic and drift diffusion models for semiconductors, J. Differential Equations 170 (2001), 472–493. MR1815191
  18. Jerome J., Analysis of charge transport: a mathematical study of semiconductor devices, Springer-Verlag, Heidelberg 1996. (1996) MR1437143
  19. Jüngel A., A steady-state potential flow Euler-Poisson system for charged quantum fluids, Comm. Math. Phys. 194 (1998), 463–479. (194) MR1627673
  20. Jüngel A., Quasi-hydrodynamic semiconductor equations, Progress in Nonlinear Differential Equations, Birkhäuser, Basel 2001. Zbl0969.35001MR1818867
  21. Jüngel A., Mariani M. C., Rial D., Local existence of solutions to the transient quantum hydrodynamic equations, Math. Models Methods Appl. Sci. 12 (2002), 485–495. Zbl1215.81031MR1899838
  22. Jüngel A., Li H.-L., Quantum Euler-Poisson systems: global existence and exponential decay, to appear in Quart. Appl. Math. 2005. Zbl1069.35012MR2086047
  23. Landau L. D., Lifshitz E. M., Quantum mechanics: non-relativistic theory, New York, Pergamon Press 1977. (1977) MR0400931
  24. Li H.-L., Markowich P. A., A review of hydrodynamical models for semiconductors: asymptotic behavior, Bol. Soc. Brasil. Mat. (N.S.) 32 (2001), 321-342. Zbl0996.82064MR1894562
  25. Loffredo M., Morato L., On the creation of quantum vortex lines in rotating HeII, Il nouvo cimento 108B (1993), 205–215. (1993) 
  26. Madelung E., Quantentheorie in hydrodynamischer Form, Z. Phys. 40 (1927), 322. (1927) 
  27. Marcati P., Natalini R., Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal. 129 (1995), 129–145. (1995) Zbl0829.35128MR1328473
  28. Markowich P., Ringhofer C., Schmeiser C., Semiconductor Equations, Springer, Wien 1990. (1990) Zbl0765.35001MR1063852
  29. Pacard F., Unterreiter A., A variational analysis of the thermal equilibrium state of charged quantum fluids, Comm. Partial Differential Equations 20 (1995), 885–900. (1995) Zbl0820.35112MR1326910
  30. Shu C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report No. 97-65, NASA Langley Research Center, Hampton, USA 1997. (1997) MR1728856
  31. Zhang B., Jerome W., On a steady-state quantum hydrodynamic model for semiconductors, Nonlinear Anal., Theory Methods Appl. 26 (1996), 845–856. (1996) Zbl0882.76105MR1362757

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.