Relaxation-time limits of global solutions in full quantum hydrodynamic model for semiconductors
Applications of Mathematics (2024)
- Issue: 1, page 113-137
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topRa, Sungjin, and Hong, Hakho. "Relaxation-time limits of global solutions in full quantum hydrodynamic model for semiconductors." Applications of Mathematics (2024): 113-137. <http://eudml.org/doc/299206>.
@article{Ra2024,
abstract = {This paper is concerned with the global well-posedness and relaxation-time limits for the solutions in the full quantum hydrodynamic model, which can be used to analyze the thermal and quantum influences on the transport of carriers in semiconductor devices. For the Cauchy problem in $\mathbb \{R\}^3$, we prove the global existence, uniqueness and exponential decay estimate of smooth solutions, when the initial data are small perturbations of an equilibrium state. Moreover, we show that the solutions converge into that of the simplified quantum energy-transport model and the quantum drift-diffusion model for the moment relaxation limit, and the moment and energy relaxation limit, respectively.},
author = {Ra, Sungjin, Hong, Hakho},
journal = {Applications of Mathematics},
keywords = {quantum hydrodynamic equation; quantum Euler-Poisson system; bipolar semiconductor model; relaxation-time limit},
language = {eng},
number = {1},
pages = {113-137},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relaxation-time limits of global solutions in full quantum hydrodynamic model for semiconductors},
url = {http://eudml.org/doc/299206},
year = {2024},
}
TY - JOUR
AU - Ra, Sungjin
AU - Hong, Hakho
TI - Relaxation-time limits of global solutions in full quantum hydrodynamic model for semiconductors
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 113
EP - 137
AB - This paper is concerned with the global well-posedness and relaxation-time limits for the solutions in the full quantum hydrodynamic model, which can be used to analyze the thermal and quantum influences on the transport of carriers in semiconductor devices. For the Cauchy problem in $\mathbb {R}^3$, we prove the global existence, uniqueness and exponential decay estimate of smooth solutions, when the initial data are small perturbations of an equilibrium state. Moreover, we show that the solutions converge into that of the simplified quantum energy-transport model and the quantum drift-diffusion model for the moment relaxation limit, and the moment and energy relaxation limit, respectively.
LA - eng
KW - quantum hydrodynamic equation; quantum Euler-Poisson system; bipolar semiconductor model; relaxation-time limit
UR - http://eudml.org/doc/299206
ER -
References
top- Chen, X., 10.1007/s00033-008-7068-4, Z. Angew. Math. Phys. 60 (2009), 416-437. (2009) Zbl1173.35518MR2505412DOI10.1007/s00033-008-7068-4
- Chen, X., Chen, L., 10.1016/j.jmaa.2008.01.015, J. Math. Anal. Appl. 343 (2008), 64-80. (2008) Zbl1139.35010MR2409458DOI10.1016/j.jmaa.2008.01.015
- Chen, X., Chen, L., Jian, H., 10.1016/j.nonrwa.2008.01.008, Nonlinear Anal., Real World Appl. 10 (2009), 1321-1342. (2009) Zbl1171.35329MR2502947DOI10.1016/j.nonrwa.2008.01.008
- Chen, L., Ju, Q., 10.1007/s00033-005-0051-4, Z. Angew. Math. Phys. 58 (2007), 1-15. (2007) Zbl1107.35037MR2293100DOI10.1007/s00033-005-0051-4
- Dong, J., Mixed boundary-value problems for quantum hydrodynamic models with semiconductors in thermal equilibrium, Electron. J. Differ. Equ. 2005 (2005), Article ID 123, 8 pages. (2005) Zbl1245.35029MR2181267
- Gardner, C. L., 10.1137/S003613999224042, SIAM J. Appl. Math. 54 (1994), 409-427. (1994) Zbl0815.35111MR1265234DOI10.1137/S003613999224042
- Gianazza, U., Savaré, G., Toscani, G., 10.1007/s00205-008-0186-5, Arch. Ration. Mech. Anal. 194 (2009), 133-220. (2009) Zbl1223.35264MR2533926DOI10.1007/s00205-008-0186-5
- Gualdani, M. P., Jüngel, A., Toscani, G., 10.1137/S0036141004444615, SIAM. J. Math. Anal. 37 (2006), 1761-1779. (2006) Zbl1102.35045MR2213393DOI10.1137/S0036141004444615
- Huang, F., Li, H.-L., Matsumura, A., 10.1016/j.jde.2006.02.002, J. Differ. Equations 225 (2006), 1-25. (2006) Zbl1160.76444MR2228690DOI10.1016/j.jde.2006.02.002
- Jia, Y., Li, H., 10.1016/S0252-9602(06)60038-6, Acta Math. Sci., Ser. B, Engl. Ed. 26 (2006), 163-178. (2006) Zbl1152.76505MR2206278DOI10.1016/S0252-9602(06)60038-6
- Jüngel, A., 10.1007/s002200050364, Commun. Math. Phys. 194 (1998), 463-479. (1998) Zbl0916.76099MR1627673DOI10.1007/s002200050364
- Jüngel, A., Li, H., Quantum Euler-Poisson systems: Existence of stationary states, Arch. Math., Brno 40 (2004), 435-456. (2004) Zbl1122.35140MR2129964
- Jüngel, A., Li, H., 10.1090/qam/2086047, Q. Appl. Math. 62 (2004), 569-600. (2004) Zbl1069.35012MR2086047DOI10.1090/qam/2086047
- Jüngel, A., Li, H.-L., Matsumura, A., 10.1016/j.jde.2005.11.007, J. Differ. Equations 225 (2006), 440-464. (2006) Zbl1147.82364MR2225796DOI10.1016/j.jde.2005.11.007
- Jüngel, A., Matthes, D., Milišić, J. P., 10.1137/050644823, SIAM J. Appl. Math. 67 (2006), 46-68. (2006) Zbl1121.35117MR2272614DOI10.1137/050644823
- Jüngel, A., Milišić, J. P., 10.1016/j.nonrwa.2010.08.026, Nonlinear Anal., Real World Appl. 12 (2011), 1033-1046. (2011) Zbl1206.35152MR2736191DOI10.1016/j.nonrwa.2010.08.026
- Jüngel, A., Pinnau, R., 10.1137/S0036142900369362, SIAM J. Numer. Anal. 39 (2001), 385-406. (2001) Zbl0994.35047MR1860272DOI10.1137/S0036142900369362
- Jüngel, A., Violet, I., The quasineutral limit in the quantum drift-diffusion equations, Asymptotic Anal. 53 (2007), 139-157. (2007) Zbl1156.35077MR2349559
- Kim, Y.-H., Ra, S., Kim, S.-C., 10.1016/j.nonrwa.2020.103261, Nonlinear Anal., Real World Appl. 59 (2021), Article ID 103261, 18 pages. (2021) Zbl1468.35202MR4177987DOI10.1016/j.nonrwa.2020.103261
- Klainerman, S., Majda, A., 10.1002/cpa.3160340405, Commun. Pure Appl. Math. 34 (1981), 481-524. (1981) Zbl0476.76068MR0615627DOI10.1002/cpa.3160340405
- Li, H., Marcati, P., 10.1007/s00220-003-1001-7, Commun. Math. Phys. 245 (2004), 215-247. (2004) Zbl1075.82019MR2039696DOI10.1007/s00220-003-1001-7
- Li, H., Zhang, G., Zhang, M., Hao, C., 10.1063/1.2949082, J. Math. Phys. 49 (2008), Article ID 073503, 14 pages. (2008) Zbl1152.81528MR2432041DOI10.1063/1.2949082
- Mao, J., Zhou, F., Li, Y., 10.1016/j.jmaa.2009.11.039, J. Math. Anal. Appl. 364 (2010), 186-194. (2010) Zbl1186.35165MR2576062DOI10.1016/j.jmaa.2009.11.039
- Markowich, P. A., Ringhofer, C. A., Schmeiser, C., 10.1007/978-3-7091-6961-2, Springer, Vienna (1990). (1990) Zbl0765.35001MR1063852DOI10.1007/978-3-7091-6961-2
- Nirenberg, L., On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 13 (1959), 115-162. (1959) Zbl0088.07601MR0109940
- Nishibata, S., Shigeta, N., Suzuki, M., 10.1142/S0218202510004477, Math. Models Methods Appl. Sci. 20 (2010), 909-936. (2010) Zbl1193.82057MR2659742DOI10.1142/S0218202510004477
- Nishibata, S., Suzuki, M., 10.1016/j.jde.2007.10.035, J. Differ. Equations 244 (2008), 836-874. (2008) Zbl1139.82042MR2391346DOI10.1016/j.jde.2007.10.035
- Ra, S., Hong, H., 10.1007/s00033-021-01540-8, Z. Angew. Math. Phys. 72 (2021), Article ID 107, 32 pages. (2021) Zbl1467.76078MR4252285DOI10.1007/s00033-021-01540-8
- Ri, J., Ra, S., Solution to a multi-dimensional isentropic quantum drift-diffusion model for bipolar semiconductors, Electron. J. Differ. Equ. 2018 (2018), Article ID 200, 19 pages. (2018) Zbl07004591MR3907819
- Simon, J., 10.1007/BF01762360, Ann. Mat. Pura Appl. (4) 146 (1986), Article ID 146, 32 pages. (1986) MR0916688DOI10.1007/BF01762360
- Zhang, G., Li, H.-L., Zhang, K., 10.1016/j.jde.2008.06.019, J. Differ. Equations 245 (2008), 1433-1453. (2008) Zbl1154.35071MR2436449DOI10.1016/j.jde.2008.06.019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.