Multiplication modules and related results

Shahabaddin Ebrahimi Atani

Archivum Mathematicum (2004)

  • Volume: 040, Issue: 4, page 407-414
  • ISSN: 0044-8753

Abstract

top
Let R be a commutative ring with non-zero identity. Various properties of multiplication modules are considered. We generalize Ohm’s properties for submodules of a finitely generated faithful multiplication R -module (see [8], [12] and [3]).

How to cite

top

Ebrahimi Atani, Shahabaddin. "Multiplication modules and related results." Archivum Mathematicum 040.4 (2004): 407-414. <http://eudml.org/doc/249318>.

@article{EbrahimiAtani2004,
abstract = {Let $R$ be a commutative ring with non-zero identity. Various properties of multiplication modules are considered. We generalize Ohm’s properties for submodules of a finitely generated faithful multiplication $R$-module (see [8], [12] and [3]).},
author = {Ebrahimi Atani, Shahabaddin},
journal = {Archivum Mathematicum},
keywords = {multiplication module; secondary module; Ohm’s properties; multiplication module; secondary module; Ohm's properties},
language = {eng},
number = {4},
pages = {407-414},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Multiplication modules and related results},
url = {http://eudml.org/doc/249318},
volume = {040},
year = {2004},
}

TY - JOUR
AU - Ebrahimi Atani, Shahabaddin
TI - Multiplication modules and related results
JO - Archivum Mathematicum
PY - 2004
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 040
IS - 4
SP - 407
EP - 414
AB - Let $R$ be a commutative ring with non-zero identity. Various properties of multiplication modules are considered. We generalize Ohm’s properties for submodules of a finitely generated faithful multiplication $R$-module (see [8], [12] and [3]).
LA - eng
KW - multiplication module; secondary module; Ohm’s properties; multiplication module; secondary module; Ohm's properties
UR - http://eudml.org/doc/249318
ER -

References

top
  1. Ali M. M., The Ohm type properties for multiplication ideals, Beiträge Algebra Geom. 37 (2) (1996), 399–414. (1996) Zbl1054.13500MR1422534
  2. Anderson D. D., Al-Shaniafi Y., Multiplication modules and the ideal θ ( M ) , Comm. Algebra 30 (7) (2002), 3383–3390. Zbl1016.13002MR1915002
  3. Anderson D. D., Some remarks on multiplication ideals, II, Comm. Algebra 28 (2000), 2577–2583. Zbl0965.13003MR1757483
  4. Ameri R., On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 27 (2003), 1715–1724. Zbl1042.16001MR1981026
  5. Barnard, A, Multiplication modules, J. Algebra 71 (1981), 174–178. (1981) Zbl0468.13011MR0627431
  6. El-Bast Z. A., Smith P. F., Multiplication modules, Comm. Algebra 16 (1988), 755–779. (1988) Zbl0642.13003MR0932633
  7. Ebrahimi Atani S., Submodules of secondary modules, Int. J. Math. Math. Sci. 31 (6) (2002), 321–327. MR1927825
  8. Gilmer R., Grams A., The equality ( A B ) n = A n B n for ideals, Canad. J. Math. 24 (1972), 792–798. (1972) MR0308109
  9. Low G. H., Smith P. F., Multiplication modules and ideals, Comm. Algebra 18 (1990), 4353–4375. (1990) Zbl0737.13001MR1084452
  10. Lu, C-P., Spectra of modules, Comm. Algebra 23 (10) (1995), 3741–3752. (1995) MR1348262
  11. Macdonald I. G., Secondary representation of modules over commutative rings, Symposia Matematica 11 (Istituto Nazionale di alta Matematica, Roma, (1973), 23–43. (1973) MR0342506
  12. Naoum A. G., The Ohm type properties for finitely generated multiplication ideals, Period. Math. Hungar. 18 (1987), 287–293. (1987) Zbl0628.13002MR0902516
  13. Smith P. F., Some remarks on multiplication module, Arch. Math. 50 (1988), 223–235. (1988) MR0933916
  14. Schenzel S., Asymptotic attached prime ideals to injective modules, Comm. Algebra 20 (2) (1992), 583–590. (1992) MR1146316

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.